Matthew Johnson

CCID Smart-Card Library
ComputerSciencdripos,Part |1
Trinity Hall
2004

Proforma

Name: Matthew Johnson

College: Trinit y Hall

Project Title: CCID Smart-Card Library

Examination: Computer Science Trip o0s,
Part Il. 2004

Word Count: 9185 !

Project Originator: Dr. M. Kuhn

Supervisor: S.J. Murdoch

Original Aims of the Pro ject

The original aim of this project was to produce a user spacelibrary for
accessingthe features of 1ISO 7816[6]-basedsmart-cards via USB readers.
This library would be available to programswhich usethesecards, to provide
an easyand consistert interface to their features, and would also perform
securemultiplexing betweenprograms and card readers.

Work Completed

I have completed a framework for a user spacelibrary for accessinglSO
7816[6]-basedsmart-cards, and have implemented enough code within the
framework to demonstrate its operation. A description of all that has been
completed appearsin this dissertation, and selectedexcerpts of code form
the appendices.

Special Dizculties

None.

This word count was computed by ps2ascii dissertation.ps | tr -cd
'0-9A-Za-z nn' | wc -w

Declaration

I, Matthew Johnson of Trinity Hall, being a candidate for Part Il of the
Computer ScienceTrip os, hereby declarethat this dissertation and the work
described in it are my own work, unaided exceptas may be speci ed below,
and that the dissertation does not contain material that has already been
usedto any substartial extent for a comparable purpose.

Signed
Date

Contents

1 Intro duction

2 Preparation
2.1 Familiarisation with Tools
2.2 Requiremeris Analysis
2.3 Specications o
231 CCIDCIasS-S[BC v v v v v et e
232 ISO7816
2.3.3 APDU Syntax
24 Architecture
25 Choiceof Tools

3 Implemen tation
3.1 Architecture
3.1.1 Security Implications
3.2 Library
3.2.1 Example APDU Methods
3.2.2 Implementation of Library Functions.
3.2.3 Library Documentation
3.24 SelectingaCard
3.3 Daemon
3.3.1 UNIX ProcessManagemen
3.3.2 Socket Communication
3.3.3 ManagingUSB devices.
3.34 USBProtocols
3.4 Library-Daemon Protocol

4 Evaluation
4.1 Serviceability
4.1.1 Library APl

11
11
13
13
14
14
15
15
15
18
18
19
20
22

4.1.2 Application-Daemon Protocol 26

413 USBCode. 26

414 T=0 andAPDU 26

4.2 Simplicity 26
4.3 Stability 27
4.4 Security e e e e 27
4.5 Additional Features 29
45.1 Interrupt-basedevents 29

46 Testing 29
47 SUMMary e e e e e 30
5 Conclusions 31
5.1 Achievemerts 31
5.2 Future Work 31
Bibliograph y 33
App endices 35
Pro ject Prop osal 51

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1

Example File Structure (takenfrom ISO 7816[2]) 6
Di®erert File Types(takenfrom ISO 7816[2]) 7
Architecture Overview Diagram 12
Example Library Interfaces 14
Example Output fromCwEB 16
CWEB SourceCodefor Figure 3.3. 17
APDU Command Structure (taken from ISO 7816[2]) 21
Structures for Storing APDU Commands 23
Example Application Code 27

Vi

Chapter 1

In tro duction

Until recertly, the smart-card industry hasn't had a consisternt set of stan-
dards or speci cations for their cards. This has led to a large nhumber of
proprietary solutions, all of which are incompatible and require di®eren de-
vice driversand interfacing software. This hasmadeit very ditcult to write
driversto support them and alsodixcult to produce applications which can
work seamlesslyacrossmany di®eren typesof card. The samefeaturesmay
not be supported, and the APIs for accessinghesefeatureswill be di®erer.

There are projects available that attempt to solve this. The MuscleCard
Project! for the GNU/Lin ux operating system is one of these which has
been quite heavily dewveloped. However, they all su®erfrom the problem
that in having to support all the available typesof smart-card, they tend to
be quite bloated and ditcult to use.

There are sewral standards governing the design of and interface to
smart-cards. 1SO Speci cation 7816[6]describes how to build smart-cards
from the electrical and physical level, to the protocolswhich should be used
on top, and has a consistert framework for extending the protocols with
proprietary commands. This speci cation is endorsedby people like the
Eurocard-Mastercard-Visa(EMV) group who have designedthe smart-cards
built into most credit and debit cards, and is likely to be used for most if
not all new smart-cards developed.

A secondproblem with the majority of smart-card readersis with their
interface to the computer. Most of them have used either the parallel or
serial bussegto connectto the computer, or even a custom connectiondirect
onto the motherboard. This raisesyet more problems as those IO ports do
not easily multiplex multiple devicesseamlesslyand are in short supply.

Lhttp:/iwww.lin uxnet.com/m usclecard/

2 CHAPTER 1. INTR ODUCTION

This hasall beenchangedwith the popularisation of the Universal Serial
Bus (USB)[5]. USB hasallowed machinesto have asmany devicesattached
as necessary and with a consistert cross-platform interface. Due to its
extensibility and improved speed,USB is rapidly replacing all the legacylO
connectors,andis likely to be the only method that needsto be supported in
the near future. The USB Chip/Smart-Card Interface Device (CCID) Class
speci cation givesa protocol for accessingthese devicesover the Universal
Serial Bus[7].

With both these things in mind, Dr Kuhn and | decidedthat a clean
implementation of the ISO and CCID speci cations to interface with USB-
basedsmart-card readerswas necessary | have primarily dewveloped this for
the GNU/Lin ux operating system, but sincel have written code ertirely in
user-space,the only platform-speci city is in the USB interface, which is
being provided by LibUSBJ[3] { which supports a wide range of UNIX -like
operating systems.

Finally, a feature which has been ertirely missing from the previous
generation of drivers is multiplexing of applications talking to cards. This
project provides a systemwhere multiple smart-cardscan bein useby mul-
tiple applications at any onetime, and wherethe driver systemmanagesthe
insertion/removal of cards, and enforcesthe separation of applications and
the cardsthey are accessing.

Chapter 2

Preparation

This sectionsummarisesthe work undertaken prior to the implemertation of
the project. Current systemsin this areaare discussedand | brie®y outline
the requiremerts of my system. | alsolist the tools usedin the production
of the project.

2.1 Familiarisation with Tools

The tools| decidedto usefor this project arelisted in Section2.5. Sewral of
them were either new to me, or | had not usedthem for sometime. There-
fore, before starting to work on the project | had to do some preliminary
work to familiarise myself with them. | have a fair amount of experience
with IATEX and c++, but not with cweB, and | had not used c for sev-
eral years. | wrote a selectionof programs to familiarise myself with using
CWEB. These programs were also usedto investigate how the c standard
libraries worked to handle UNIX sockets and accessto USB devices, which
are both primitiv esthat | usedduring the project. This took a few weeks
of my initial preparation time.

2.2 Requiremen ts Analysis

Before starting to write the project | had seweral meetingswith my super-
visor, aswell as Dr Kuhn, who suggestedthe project, to discusswhat they
thought would be usefulin this area. | alsoinvestigated what was currently
available in this area, and read through the 1SO speci cations sothat | had
an overview of how they all worked.

4 CHAPTER 2. PREPARATION

The basic functionality that the project neededto provide is to allow
the applications to accessall the high-level features of the card which are
speci ed in [6]. There are seweral high-level protocols which are speci ed
and di®erert cardsmay implement a di®eren selectionof them (seeSection
2.3.2 for more details). Ideally the project should be able to support all of
thesefeatures, and be able to support the useof proprietary vendor-speci ¢
extensions.

In addition to the above, to make this project stand out from existing
systemsthe features should be preseried with as much abstraction as pos-
sible. Therefore, | wanted to provide the accesdo featuresasfunction calls
in a high-level language,and hide as many of the implementation details as
possible. This is relevant, sincethe underlying wire-protocol hastwo di®er-
ent variants (mentioned in Section 2.3.2), which do not needto be exposed
to the application.

Finally, we wanted to provide an additional security layer which allowed
multiple applications to be running accessingmultiple smart-cards, without
having to provide the applications with direct accesgo the devicesconcerned
sothat it is possibleto ensurethat the security policy isn't broken. This
was to be done by splitting the driver into seweral sections,with only part
of the driver having privileged accesdso the devices.

2.3 Speci cations

There are two main sets of speci cations that cover this area. The rst

is the USB CCID Class-Spec, which speci es a USB Class-ID for CCID-

basedsmart-cards, and contains the information about how to encapsulate
the higher-level protocols on the USB bus. The secondis an ISO standard
covering the application-level protocols which are commonregardlessof the
bus usedto connectthe device.

2.3.1 CCID Class-spec

The USB Chip/Smart-Card Interface Device Class-Spec[7] allocates a new
USB Class-ID of 0x0OB This classidenti es all deviceswhich are USB CCID
readers. This classID can be detected by the Linux operating system and
can notify programswhen devicesof this type are inserted or removed. The
class speci cation also de nes interfaces for getting extended information
about the capabilities of a device, such assupported voltagesand protocols.
It also,importantly, includesthe information about how to encade the ISO

2.3. SPECIFICATIONS 5

speci cations onto the USB bus, and how to power up the deviceto get the
Answer To Reset.

The Speci cations list three endpoints which a CCID reader may sup-
port: Bulk-In and Bulk-Out, and Interrupt. The rst two carry the com-
mands to the device and are used by the current projects attempting to
implement drivers. The Interrupt endpoint is a feature which hasonly been
implemented in the latest version of LibUSB and carries out-of-band data
from the smart-card reader, allowing programsto be noti ed of everts such
as card insertion and removal.

Communicating with the card readeris done via a message response
structure. The messagesle ned in the classspeci cation for accessingthe
card include powering up and down the card, getting the status of a slot
on the reader, setting various parameters,and sendingblocks of commands,
such as an APDU command. There is also a separate messagefor secure
(PIN-restricted) operations. | usedthese messagesand the corresponding
responses.This is investigatedin more detail in Chapter 3 Section3.3.4,and
the codeimplemerting canbe seenin the complete sourcedocumertation[1].

Most of the options which are de ned in here are not of interest to the
application programmer. They specify how a particular card reader should
be communicated with, and usersof the library wish this to be completely
transparent and work with any compliant reader device.

2.3.2 1SO 7816

The ISO 7816[6]speci cation outlines seweral di®erent protocols for access-
ing the cards at various di®eren levels, and specify what operations are
valid at ead level.

At the highest level is the interface that application programmerswant
to access. This is what is exposedto programmers via the library API.
The most common interface, and the one | focussedon, is the Application
Protocol Data Unit (APDU) protocol. This is basedon operations on a
structure which has le-system-like semartics, and corntains read and write
operations on these les as well as more specialised commands. A more
complete description of this protocol is given below in section 2.3.3.

The other protocolsinclude TPDU and an SQL-like syntax for accessing
the smart-card like a database. TPDU is a similar protocol to APDU, but
lower level and supported by somecard which don't support APDU. | did
not initially implemerting these protocols, but the design of the system
will keepin mind extensibility to these protocols as well. The speci cation
de nes methods to nd out the capabilities of the various cards. These

6 CHAPTER 2. PREPARATION

will be exposedto the programmer, and used to verify that a particular
command can be usedon that card.

Those protocols are all application-level protocols which needto be ex-
posedto the applications via the driver. The standard also de nes lower
level protocols which de ne how the cards communicate with the reader.
Called T=0or T=1, the project handlesthesetwo internally, sothat the ap-
plication programmer doesnot needto specify which oneis being used. The
protocol in useis determined by the data sert asthe answer to the reset
command. Answer To Resetis an important part of all the protocols, and
encadesa lot of data about the card.

At a lower level still the ISO standard also de nes the electrical and
physical characteristics of the cards, but that is the domain of the CCID
reader, and not relevant to this project.

2.3.3 APDU Syntax
Files

The data on the smart-cards which support APDU is, at the Application
Protocol level, organisedin a Tle hierarchy, or tree structure. This starts
with the Master File (MF) asthe root node of the tree, and a binary tree
below it of Dedicated Files (DFs). The Master File is a mandatory DF used
asthe root node of the tree. In addition, any of the DFs my have assaiated
Elemertary Files (EFs). There are two typesof EF, Internal EFs contain
data which is usedby the processingunits on the card and Working EFs are
purely data storagefor external programs. Figure 2.1 shows an example Te
layout.

(&
DF @m@

[oF] (&) () o]

Figure 2.1: Example File Structure (taken from ISO 7816[2])

APDU commands operate on a particular EF. This may be speci ed
implicitly - the speci cation has the notion of a current Te on which op-
erations will be performed is no e is speci ed explicitly. Or, it may be
speci ed explicitly in the commandby Te identi er. The e identier isa

2.3. SPECIFICATIONS 7

two byte number, which is unique among all DFs and EFs at a particular
branch point in the tree. As with normal Te structures, EFs may have the
same le ID if they have di®eren paths to them in the tree. The MF is
always referred to by the resened value Ox3F00

Elemertary les can also have seweral di®eren structures, although not
all cards support all of the di®eren structures. A transparert EF is a stan-
dard block-accessedle with no explicit internal structure. Recordstructure
EFs are explicitly encaded as being made up from individual records(xed
or variable length) and which can be organised either linearly or cyclicly.
There is the notion of a current record pointer which indicates the record
currently being accessedAll of the record commandscan either implicitly
usethe current record, or selectthe record relative to the start and end of
the e, or the currently selectedrecord. Figure 2.2 shows thesedi®erert Te
accessnethods.

Transparent Linear fixed Linear variable Cyclic fixed

J

1
]

L ITIIT] ssssee
1 |
J 1

Figure 2.2: Di®erert File Types(taken from ISO 7816[2])

APDU Commands

APDU commandsare structured as messagedetweenthe application and
the smart-card. The application sendscommand messagedo the device,
which then sendsa responsebadk. The command messageconains a com-
mand headerwhich describesthe commandand its xed length parameters.
It and may alsocortain an attached variable length data item and the length
of any expected response. The responseheader contains a status eld, and
may contain a variable length response.

There are four typesof APDU command message.The simplest type is
a 4-byte commandheader. with no attached data, and no expectedresponse
data. Type 2 and 3 either contain a 2 byte expected responselength, or a 2
byte length and attached data eld of length bytes asa commandparameter.
The nal type contains both a data parameter and an expected response
length. This nal type is 8-bytes plus a variable length data eld.

8 CHAPTER 2. PREPARATION

The exact coding of eadh command is given in more detail in Chapter
3 Section 3.3.4. The code for managing the encading and decaling them is
visible in Appendix B Section 81.

2.4 Arc hitecture

The USB subsystemon GNU/Lin ux frequertly usesa package called hot-
plug! to manage devicesas they are inserted or removed. This involves a
daemon which runs and constartly monitors the USB bus. When a new
deviceis inserted into the machine hotplug tries to establish which modules
are required to useit, and possibly launchesexternal programsto deal with
it.

| wanted to extend this architecture to the smart-cards and readers.
This would allow programsto register themselesas handlers for particular
smart-cards, and to be noti ed of the insertion and removal of smart-cards,
and for my program to launch them if necessary

2.5 Choice of Tools

This project is designedto be used by a lot of other programmers, and
incorporated in a range of other programs, typically those written for the
GNUY/Lin ux Operating System. Traditionally programsfor UNIX -like Oper-
ating Systems, particularly those such as device drivers, have beenwritten
using the ¢ programming language,and to allow this project to be usedin as
wide a range of applications asnecessaryl decidedto usethe most common
language. Many of the programs which could bene't from this project are
already in existenceand in the most part usec.

For documentation purposesl decidedto write the program using the
CWEB System of Structured Documertation, by Knuth and Levy[8]. This
documerts and marks up the sourceusing the TEX typesetting language.
Documertation and commerns are interspersedwith the code throughout
the source Tes, and later converted into pure TEX and pure C. This is
compiled using the GNU Compiler Collection C compiler?, using GNU make
to manage the build process. The source les were edited using the Vi
IMproved editor with C syntax hi-lighting.

Developmert was performed on a selection of machines, either my per-
sonal machines running Debian GNU/Lin ux, or Public Workstation Ma-

Lhitp:/lin - ux-hotplug.sourceforge.net/
2http://gce.gn u.org/

2.5. CHOICE OF TOOLS 9

chines running Red Hat Linux and managedby the University Computing
Service. The sourcewas stored in the Perforce® Revision Control System
on my personalserver running Debian GNU/Lin ux, but nightly generation
badkups were taken and distributed to a number of other machines dis-
tributed over Cambridge, including the University Archive Serwer (Pelican)
and the madines of the Student Run Computing Facility*. This process
was automated using logrotate and a custom POSIX SH Shell script.

Perforce was chosenover systemssuc as CVS or RCS due to a number
of improved features, including a very good graphical environment, and
although | never had to use any of the roll-back featuresit was simple to
use and made badkups and dewveloping on seeral machines very easy

Shitp://www.p erforce.com/
“http:/iwww.srcf.ucam.org/

10

CHAPTER 2. PREPARATION

Chapter 3

Implemen tation

This chapter describesthe implementation of a systemto meet the require-
ments given in Chapter 2 Section 2.2. The architecture of the system is
described, as are the protocols that were designedto interface betweenthe
various componerts of the system.

I will start by giving the architecture overview, and then give details
of eadt section, and all the protocols, in more depth individually. The
main componerts are the library which provides the user-level API and the
system daemon, which provides all the communication with the hardware.
The protocolsusedbetweenthe cards and the card readersand the daemon
are given in the speci cation documerts listed in Section 2.3, but | will
elaborate further below. There is alsoa protocol neededbetweenthe library
and the daemon, and that is a custom protocol designedfor this project.

3.1 Arc hitecture

As | mentioned in Section2.2,| wanted to provide a systemwhich could pro-
vide a securelayer of separation betweenseweral applications using di®eren
cards. This would have to apply even if the applications were running as
di®eren usersand the cardswerein di®ereri slots of the samecard reader,
or the sameslot at di®erert times. This suggestedthe use of a two level
system, comprised of a privileged part, which would have direct accessto
the devicesand would mediate application accessand an unprivileged part
which would be part of the applications. The interactions between these
can be seenin Figure 3.1. This gure illustrates the caseof one applica-
tion (marked in red) accessingtwo smart-cards, and the other application
accessinga card in a sharedreader.

11

12

CHAPTER 3. IMPLEMENT ATION

UNIX Socket

Daemon Process

USB
Smart Card ' | | :
2 ! Smart Card
Card Reader !
E Smart Card

Card Reader

Figure 3.1: Architecture Overview Diagram

3.2. LIBRARY 13

3.1.1 Security Implications

This project handlesthe communications betweenthe applications and the
smart-card, and is not trying to dictate their security policy or model. Also,
the smart-cards themseles have a security policy which they enforce re-
garding accessio secrets. Both the application and the smart-card assume
that once they start communicating and have sert authentication tokens
to the other, the channel is restricted to them. This is the only security
policy which | am trying to enforcewith this project. Therefore, security
credertials merely needto be maintained over the courseof the sessionand
a sessionmust be completely separate from any other on the same card.
How this is done can be seenin Section 3.3.2.

3.2 Library

As the functionality of the project is de ned by the library API that is
preseried to programmers, it was natural to start by specifying this, and
then building a system which would be able to support it.

The speci cations of the systemare to provide a simple interface to the
programmerto accessll of the featuresthat the card providesin the APDU *
and TPDU interfaces. Due to time constraints | decidedto start with just
the APDU functionality, but designedthe system such that TPDUs could
be easily added.

APDUs are easily classi ed into seweral sections, such as Binary- or
Record-basedaccesse®f les on the card. In an object-oriented language
such as Java or C++ | might have implemented this using objects for eat
type of APDU, and overloading the various methods to handle eat one
di®ererily. Sincel was restricted to using the most common programming
language for the target operating systems(C) which lacks such high-level
concepts,| could not do so. | originally planned to have a generic method
which would take a parameter to govern which APDU call would be made.
Unfortunately thereis such alarge diversity in parametersneededfor APDU
calls, that this would not work. Another possibility would be to passin a
structure containing all the parameters, which could vary for ead type of
APDU. | discardedthis asbeingtoo complex and unwieldy to be usedreg-
ularly in programs. Therefore, | decidedto useindividual methods for eadh
APDU call, with appropriate naming cornvertions to disanmbiguate between
APDU and future protocols.

1SeeSection 2.3.3

14 CHAPTER 3. IMPLEMENT ATION

3.2.1 Example APDU Metho ds

The APDU protocol provides sewral calls for updating les via a
binary interface. These are APDWREAIBINARY APDUNRITEBINARY
APDWPDATBINARYand APDLERASBINARY Each of these corresponds
to a method call of the samename.

APDUs are implemented as a message/respnse system between the
computer and the card, but | wanted to hide this from the applications
as much as possible. Therefore, eadh method also has the return values
expected from the card in the method signature, so the application pro-
grammer only needsto make one library call do requestthe data.

The interfacesprovided can be seenin the library header le, an excerpt
of which is givenin Figure 3.2

int apdu_read_binary(card_ref ref,
int offset, int length,
char* returneddata, int* returnedlength);

int apdu_write_binary(card_ref ref,
int offset, int length,
char* data);

int apdu_update_binary(card_ref ref,
int offset, int length,
char* data);

int apdu_erase_binary(card_ref ref,
int offset, int length);

Figure 3.2: Example Library Interfaces

3.2.2 Implemen tation of Library Functions

The library functions are merely wrappersto sendrequeststo the daemon
processwhich actually relays them to the card. They are therefore merely
a serialisation of the parametersinto the protocol layer structures (seeSec-
tion 3.4). The function then sendsthe structures to the daemonvia the
send_ccid request() method in the protocol layer, and is returned the
response from the card after the daemon has performed the query. The

3.3. DAEMON 15

function then copiesthe data from the responseto the parametersasappro-
priate. Thesecan all be seenin Appendix B, Section 162.

3.2.3 Library Documentation

As a library for use by other application programmers, documertation of
the API is essetial. This is one of the reasonsl decideto write the project
in CWEB. CWEB introducesthe ideathat documertation should be written
simultaneously with code, and henceall the documentation of the interfaces
is included in the cweB output. 2 Figure 3.3 showvs a pageof CWEB output,
along with the sourcewhich generatesit in Figure 3.4.

I will alsocornvert the relevant sectionsof the documertation into UNIX
manManual pagesfor easeof accesgo the APl and function lists.

3.2.4 Selecting a Card

Figure 3.3 also shows the documertation for how to selectwhich card the
application wants to communicate with. The computer which the applica-
tion is connectingto may have seweral smart-card readers(or a singlereader
with multiple slots). Sincemy project was speci cally written to cope with
this situation, there needsto be someway of selectingcardsto be used.

This is accomplishedvia two medanisms. Firstly connectionto the next
available card can be requested, which may block until one is available or
may return immediately with a failure if noneis availabl.. Secondly Tter
can be speci ed to be applied to a speci ¢ APDU e (seeSection2.3.3)to
selecta card which hasthat feature. This is the samemecdanism mentioned
for con guration Tes in Section4.5.1.

Exactly how this works is given in the documertation for the
get _card _reference() function which can be seenin Appendix B, Section
88. For conveniencel have reproduced this below.

3.3 Daemon

This is the section of the driver which handles direct communication with
the USB devices,and controls accesdrom the client applications. There are
two main parts to this. Firstly there is a lot of general overhead of writing
a UNIX residert processand doing socket 10 to the clients. The second
main section was serialisation of commandsfor the USB communication. |

2Seemore in Appendix B, and the full documentation, details of which are given in
the appendix.

16 CHAPTER 3. IMPLEMENT ATION

102. Function apdu_read_records(). This will read recordsfrom an EF. If ef
is setto CURRENT _EF then recordswill be read from the currently selectedEF.
Otherwise they will beread from the speci ed EF. The record to start reading from
are speci ed by type and record. If type 2 f FIRST ,LAST ,NEXT ,PREVIOUSg then
the appropriate record will be read from. If type” SPECIFY, then the record
number will be read from record. length bytes of data are read from the starting
record.

You must malloc(2) length bytes of returneddata. If no data is returned, then
returnedlength will be 0.

The return value from this function will be the APDU status that the card
returns.

int apdu_read_records (card _ref ref, int ef, RECORDYPRype, int record,

int length, int *returnedlength, char *returneddata);

88. Function getcard_referenae(). This function allows you to requesta con-
nection to a smart-card. You can specify the card to requestin sewral di®erert
ways, someof which are blocking, and someare non-blocking.

Blo cking requests:

A requestfor the next available smart-card can be made. This requestwill block
until either a smart-card is inserted, or one in use by a di®erent card is made
available.

Non-Blo cking requests:
A request can also be made which will return a card if there is one available, but
will return immediately with a NOTAVAIL messagsf there are no free cards.

Specifying cards

Smart-cards can be speci ed more precisely by giving a pattern to match against
the contents of the card. If a Te and contents are speci ed, then any candidate
card to be returned will be cheded to seeif that Te exists, and if the contents
match the string given in the secondparameter. If Te ~ o, then no cheds will be
performed. Otherwise, if content © = then the Te will be chedked for existence,
but not for content.

Possible Requests

Request Blo cking Description

BLOCKNEXTAVAIL vyes Blocks until a card is available and
returns a descriptor.

AVAIL no Returns the error NOTAVAILIf a card isn't

available. This will not block
The method hasthe signature:
int getcard_reference(card_ref* ref, CARIREQUESEquest, char * "Te, char* con-
tent);

Figure 3.3: Example Output from CWEB

3.3. DAEMON 17

@* Function |apdu_read_records()|.

This will read records from an EF. If |ef| is set to |[CURRENT_ERhen
records will be read from the currently selected EF. Otherwise they will
be read from the specified EF. The record to start reading from are
specified by [type| and |record|.

If Jtype| $\in \{$|FIRST|,|LAST|,INEXT|,|PREVIOUS|$\}$

then the appropriate record will be read from. If |type == SPECIFY]|, then
the record number will be read from |record|. |length] bytes of data are
read from the starting record.

{\bf You must |malloc(2)] |length] bytes of |returneddatal}.
If no data is returned, then |returnedlength| will be |0|.

The return value from this function will be the APDUstatus that the
card returns.
@<Exported Library Functions@>=
int apdu_read_records(card_ref ref, int ef, RECORD_TYBmpe,
int record, int length, int* returnedlength, char* returndata);

@* Function |get_card_reference()|.

This function allows you to request a connection to a smart-card.
You can specify the card to request in several different ways, some
of which are blocking, and someare non-blocking.

{\bf Blocking requests:}

{\bf Possible Requests}

\halign{\hfil \it # &# &# \hfil \cr
\bf Request & \bf Blocking & \bf Description \cr
|IBLOCK_NEXT_AVAILE yes & Blocks until a card is available
and returns a descriptor. \cr
[AVAIL| & no & Returns the error |[NOT_AVAIL|if a card isn't
available. This will not block \cr

Figure 3.4: cweB SourceCode for Figure 3.3

18 CHAPTER 3. IMPLEMENT ATION

decided that for manageability this should be split into a separate Te of
sourcecode.

3.3.1 UNIX Pro cess Managemen t

A daemonprocessin UNIX such as| neededhere must detac itself from the
consoleand run in the badkground while other tasks are performed. This is
performed by doing a fork() to create a separateprocess,and then causing
the parent processte exit, while leaving the child running. The code for this
is given in Appendix B Section 34, with detailed documertation.

Having left the console,there is no longer an error stream to print out-
put to. For logging | decidedto usethe system logger which collects logs
from most of the daemonson the system. This was accomplishedusing the
syslog C library, and my wrappers for con guring the syslogoutput are in
Appendix B Section 136.

Finally, if there is no consolewe do not have a conveniert way to send
signalsor control messageso the process.Also mertioned in Section 3.3.2,
you can usea secondcopy of the daemonto communicate with the rst one.
If there is already an instance running, then there is a secondsocket open
which can causethe existing copy to perform actions sudch as re-scanning
the USB bus, or exiting the program.

3.3.2 Socket Comm unication

There are two ways to implement socket communication in C. One is hy
using a separatethread per opensocket. This isat rst sight a simple option,
however, this brings the complexity of then managing concurrert accesseto
resourcesand implementing somesort of locking to corntrol this. Therefore,
| decidedto usea single threaded designwhich avoids these problems, and
is also theoretically more excient. This is done using the select() call in
C. This alsoallows the useof blocking asyndironous O, rather than polling
all the sockets for data. Selecttakesa list of all the currently open sockets,
and returns a list of those which have data waiting and needto be read
from. Most of the time in the program it is therefore spent in a single loop,
blocked in the selectcall. Becausethe code is blocked on 10, rather than
sitting in a tight loop and polling, the Operating System sdeduler doesnot
needto continually allocate it time while it is waiting for data, which is a
lot more excient. This can be seenin Appendix B Section 20.

There are seweral sockets in use, of seweral types. Firstly, there are two
named sockets. Theseare implemented as les with special properties, and
allow anyone to communicate with the processbound to that socket. The

3.3. DAEMON 19

main socket which client applications write to is world writable, sothat any

application can connectto it and presen credenials to try and get access
to a card. The secondoneis a cortrol channel by which the super-usercan

send messagedo the running application. This is designedto be used by

systemsud as hotplug[4] to notify the systemwhen new USB deviceshave

beenadded.

When applications requesta connection on the named sacket, they are
allocated a connection-sgeci ¢ anonymous socket which only they canaccess.
This correspondsto a single sessionwith a single smart-card. Applications
wanting to accesgmore than onecard can open multiple connections. These
sockets are all then added to the list which is passedto select() . When
noti ed of data on a socket, the daemonservicesthe requestfor that card,
and returns the result over the socket to the client.

Socket Securit y

Socket communication in implemented in Linux by writing to an area of
memory which the processwas given accessto by the Operating System
when it openedthe socket. Any Operating Systemwhich has memory pro-
tection can therefore ensurethat a socket cannot be written to except by
that process,since other applications cannot accessits addressspace. If
this is assumedto be the case,then once a socket has been openedto a
particular application it is guaranteed to be the sameapplication which is
writing to that socket. Therefore, possessiorof a socket le descriptor can
be used as an authentication token. This relies on the assumptions that
the program itself won't give accessto that memory location { but if the
application is subverted in that way then it can perform malicious accesses
itself, and such protection is outside the scope of this project { and the Op-
erating Systemsecurity. The Operating System (particularly in the caseof
Linux, but alsoin general)enforcesthe security of sockets using the memory
protection mechanisms. It can be seeneasily that if a malicious processcan
break the memory protection system, then they can accesshe USB device
directly, or the memory of the client application, and doesnot needto attack
the open socket. Therefore, replying on sockets as authentication tokensis
acceptable.

3.3.3 Managing USB devices

When the daemoninitially starts it doesa scanof the USB busto nd any
devicesthat are currently attached. This scancan be re-run at any time via
messagesen over the control socket, and such a messagewvould be sert by

20 CHAPTER 3. IMPLEMENT ATION

a system like hotplug if it discovered a CCID device being attached. The
scanpresenesany existing devicesand is therefore safeto run at any point.
The latest developmen version of LibUSB allows you to scanall the USB
bussedor devicesmatching a particular pattern in their USB class,type and
vendor IDs. | scanfor devicesmatching the USB CCID Class ID (0x0B),
which is de ned in the CCID Class-spec[7].

Once a card reader has been detected an entry is put into the list of
devicesfor ead card slot the reader has. From that point on, ead slot
is treated as a separate device, and the slots can be “owned' by di®erert
programssimultaneously. All the slots arethen chedkedto seeif they contain
a smart-card, and if soaddedto the list of devicesaccessibléby applications.

3.3.4 USB Proto cols

Once the request for a command get to the daemon processthen it needs
to be encaled to be sert to the smart-card. There are two layers to this,

First an APDU Messageblock must be built up. This is de ned in the ISO
7816[2]standard and described in the next section Then this block hasto

be enmbeddedin a CCID command messageblock, as described below. The
CCID protocol is the USB wire protocol, which sendsa command to the
card reader. The readerthen strips o®the CCID layer and sendsthe APDU

commandto the card itself. Return messagedrom the card are encaled in

a similar two-level schemeto be sert badk to the daemon.

APDU Proto col

When arequest(encoded using the protocol in Section3.4) hasbeenreceived
by the daemon, it cheds the protocol °ag on the data structure. This is
usedto switch which method is calledto decadeit. For APDU requestsit is
passedto the decode_apdu_req function, which can be seenin Appendix B,
Section 81.

A valid APDU starts with a headerof 4 bytes. The rst two specify the
command classand speci ¢ instruction, and the secondtwo are parameter
bytes. This is optionally followed by an arbitrary length of data attached to
the command (with its length) and the expected length of any reply. This
is illustrated in Figure 3.5.

The decade function takesa structure asread o®the network and con-
verts it into the byte streamto be sert over the USB. To do this, we switch
on the APDU type, and call another block of code. This setsthe classand
instruction headerbytes and copiesthe xed-length parametersinto the ap-
propriate parts of the parameter bytes, as speci ed in the 1SO standard.

3.3. DAEMON 21

Header Body
| cLa ms p1op2 [i fielal (Dot fieid 11, fieid)

Case 1

Command header

Case 2
I Command header qu fiald]

Cose 3
ICammand header ILe freld I Data fiald]

Case 4
[Cmnmand header IL.: fiald [Data field ILafiaId |

Figure 3.5: APDU Command Structure (taken from ISO 78162])

Attached data is stored in the samepart of the structure for all protocols,
and can be copied onto the end of the data block in all cases. If the par-
ticular command expects data bad from the commandthen it also setsthe
return length byte. This byte stream is then passedto the CCID layer.

When a reply is received from the card it is also encaded as an APDU
block. The reply contains rst an optional, variable length data block of the
length speci ed in the commandthat causedthe reply. Secondly it contains
two mandatory status bytes which indicate the successor otherwise of the
command. The APDU responsestructure which is passedover the network
correspondingly contains a status word, and the genericresponsestructure
contains a pointer to a byte stream. Theseare copied from the byte stream
received from the network and the structure is returned to be sert to the
client application.

CCID Proto col

The decaded APDU requestsneedto be wrapped in a CCID block to be
sert to the card reader. This is a USB-level protocol and deals with the
T=0/ T=1distinction. A CCID headercontains the type of CCID command
(PCTQRDRTOAPD)/ the slot in the deviceto sendthe command to, and
the length of the APDU command. The resulting byte stream (10 bytes of
CCID header,followed by 4 bytes of APDU header, followed by 4 bytes of
sendand receiwe length, plus the data to sendwith the command) is written
to the USB device using a bulk out commandto LibUSB.

When receiving a reply from the USB device, the CCID headeris vali-
dated and then stripp ed o®.

22 CHAPTER 3. IMPLEMENT ATION

3.4 Library-Daemon Proto col

The protocol used for communicating over the sockets between the client
applications and the daemonis in essencea serialisation of the APDU or
other command which is to be sen to the card. This serialisation is imple-
mented by having a set of xed-size parametersstored in a structure, which
is written to the network byte-wise, and an optional arbitrary-length block
of data, the length of which is speci ed in the structure. The receiver can
therefore read just the structure, then nd out how many more bytes to
expect on the sacket.

This is implemented using a seriesof struct s which have been over-
lapped using the union operator. Unions enablethe speci cation of a set of
mutually exclusive options which are stored in the samespace. Depending
on context, the samememory location is accessedis a di®eren type. With
this technique, all the di®eren typesof APDU have di®erert numbers of
parameters, but the sametype can be usedwhilst only needingto store the
largest set at useat once.

The full structures can be seenin Appendix B, Section 146, but | have
included a samplein Figure 3.6. In eadt caseof a union there is a variable
which indicates which member of the union is to be usedto accesshe data
and indicates the typesin use. Everything within the protocol-speci ¢ struc-
tures is a xed size, and there is a protocol-agnostic method of appending
extra data.

All the valuesin the structures are xed length variables, rather than
referencetypes,sothat whenreading the structure over the network a xed
number of bytes must be read. The exception to this is the pointer to the
variable length data. This is de ned at the top level sothat all protocolshave
accesdo a variable length data string, but the network code can be the same
for all. When writing to the network you must sendthe structure, followed
by exactly dsize bytes, which are then copied into a memory location at
the other end and assignedto data, or data setto NULLI® dsize ==

There is a similar structure for returning data from the card organised
in the sameway, with the only APDU return value being two status bytes
in all cases,and optionally a block of data returned from the card. This is
handled in the sameway asthe requeststructure described above.

3.4. LIBRARY-DAEMON PROTOCOL

struct ccid_request_struct {
PROTOCOL_TYpatocol;
union {
struct apdu_request_struct apdu;

h
int dsize;
char* data;

3

struct apdu_request_struct {
int apdu_type;
union {
struct apdu_binary binary;
struct apdu_record record;

}

3

struct apdu_binary {
MODHEnode;
int offset;
int length;

Figure 3.6: Structures for Storing APDU

Commands

23

24

CHAPTER 3.

IMPLEMENT ATION

Chapter 4

Evaluation

The succes9f this project is evaluated on seweral basis. Firstly, the project
set out to provide an interface for all of the servicesprovided by an ISO
7816 Smart-Card. Secondly the interface presenied to programmers using
the library should be as simple and easyto use as possible. Finally, the
implementation should be well written, stable and easyto maintain, and
secure.

4.1 Serviceabilit y

As | stated at the beginning, there wasalot that | could have implemented in
this project. There aretwo CCID-card protocols, and three application-level
protocols. All the protocols are also extensiblewith proprietary commands.
| started implementing only the T=0 and APDU protocolsrespectively, but
writing the protocols and programs suc that it would be easyto add the
othersin later.

There are three areasthat the code must be extensible to support the
rest of the protocols: the library API, the application-daemon protocol and
the USB interfacing code.

4.1.1 Library API

Sincethis has been provided simply with individual method calls for each
APDU function, it is trivial to extend in a backwards-compatible way by
adding more functions. The library usesa pre x of the protocol on all the
method names. Consequetly, you have a separatename-spaceor ead pro-
tocol's functions, and new protocols can be added without worrying about
overlapping command names.

25

26 CHAPTER 4. EVALUATION

4.1.2 Application-Daemon Proto col

The protocol usedto communicate over the sackets betweenthe two sections
of the project obviously needsto be extensibleto handle the new protocols.
It has beendesignedwith this in mind. Protocolscan be added by putting

another option in the top level union, and adding another constart to in-
dicate the protocol in use. This is not necessarilycompletely backwards-
compatible, if the protocol has a larger block of xed-length data than the
current ones. Howewer, sincethis protocol is only usedby the library code
and the daemon,which will be distributed together, applications do not use
it and there are no compatibilit y problems.

41.3 USB Code

The translation to USB and ISO 7816 protocolsis done entirely within the
daemon, so there are few, if any, issueswith badkwards-compatibility. As
far as extensibility is concerned,the USB layer passessah method through
functions to do the encading of the commandsinto the appropriate protocols.
Adding support for new protocolsis fairly easyasc programs go, however,
would have beeneasierin a languagewith support for classesfor example
Java. In that caseit would simply require overriding a method, and the
calling code doesnot needto know that there is a new protocol in use.

414 T=0 and APDU

Sincethere wassomuch work involvedin this project, the ISO 7816standard
is very large, and to fully implement a single one of the protocolswould have
taken more time that | had available for this project. Therefore, | had to
stop implemerting all of the APDU protocol, and it does not yet support
all of the commands. Howewer, | have implemented a suxcient subsetto
write sometest programs to validate the rest of the project and all of the
methods which haven't been implemented are presen as stubs for later
implementation. The USB-level encapsulationis complete for T=0 APDU
commands.

4.2 Simplicit y

As part of this project | wrote atest application to demonstratethat the code
was functioning, and to show the easeof use for application programmers.
The code for this canbefound in Appendix A. The program merely waits for
a Cambridge University ID Card to be inserted, and then readsout the card

4.3. STABILITY 27

number and assorteddetails. The code in the Appendix has beenwritten
along with documertation describing its operation, so | have included just
the sequenceof library calls necessaryin Figure 4.1. As can be seen,this
is a very simple interface, allowing programmersaccesgo what they want,
whilst hiding most of the complexity.

char * carddata;
int length;

get card_referenae(& ref, BLOCKEXTAVAIL \ FDO3,
\ <0-9>f 8g<a-z>f 2g<0-9>f 4g<a-z>0.000");
apdu_read_binary(ref, 0, 20, carddata, &length); releasecard(ref);

Figure 4.1: Example Application Code

4.3 Stabilit y

Sincethis wastoo large a project to completein its entirety, | choseto build
the framework within which all the componerts sit rst. This meansthat
it is currently not possibleto test all of the available options, which would
be the traditional test regime for this sort of software. Unfortunately, it
has meart that many of the functions have not beenfully tested, although
enough has beenimplemented to produce very simple test applications, as
can be seenin Appendix A. Many parts of the driver are very generic,and
don't depend on the protocol data being sert over them and this framework
is complete. The socket communications, and the UNIX systemsprogram-
ming parts have all beentested and are stable.

4.4 Security

The security of a complex systemis never an absolute, but rather an exercise
in risk managememn The security goalswere givenin Chapter 2, and | shall
go over them again here to seehow well the project matches my original
assessmen There are also somesecurity issuesthat | hadn't consideredin
the original planning, but which aroselater.

The main security policy that | wanted to enforcewith the driver, was
that any sessioncommunicating with a smart-card could only have one ap-
plication communicating with it. As | said in Section 3.3.2, the operating
system memory protection enforcesthe fact that onceopened,a socket can

28 CHAPTER 4. EVALUATION

only be written to by that application. Becausel am using sockets as au-
thentication tokens, only the application with a socket is allowed to send
commandsto to a particular readerslot while it is bound to an application.
The setup and tear-down operations on sockets also force power up and
power down ewvents on the smart-card, soit is guaranteed to be in the reset
state after communications have nished. If the operating system memory
protection failed, or the application using my library allowed arbitrary com-
mand insertion into the sockets then my security assumptionsare false, but
that is both outside the scope of the project, and would alsoresult in seweral
other methods of breaking the security.

An issuel hadn't consideredwas restricting accessto certain programs
or users. | was not initially concernedwith which application could use
a card, becausethe smart-cards have their own security medanism built
in. The main issue was with accessto the card once an application had
authenticated to the card. Howewer, with the system as it is there is a
potential for a denial of service. An application can start communicating
with a card, and stop other applications from doing so. It doesn't needany
special privileges to do this. A secondminor worry is for cards which are
authenticating merely by their presenceand don't corntain any secrets. This
can be handled in a lot of casesvia UNIX permissionsand Linux Pluggable
Authentication Modules (PAM).

The UNIX permissionssystem allows the restriction of which userscan
write to the socket. This canbe doneeasilyif the restriction is on a per-user
level by adding the appropriate usersto a UNIX group, and only allowing this
group to write to the socket. Changing to project to support this would be
a relatively simple matter of adding a con guration Ie option and changing
the line of code which setsthe permissions.

If the restriction needsto be per-application then this is a lot more dif-
“cult. Somesolutions exist, but not in the standard Linux kernel. Projects
such as SELinux and GRSecurity allow more ne-grained accesscortrol.

Pluggable Authentication Modulesfor Linux can perform actions suc as
changing the ownership of a sockets when the userlogsin, can can perform
di®erert actions if the useris physically at the terminal or is a remote user.
If the model is that only users physically at the computer will be using
smart-cards, and there can be only one such user at a time, then the big
stick security principle?! is completely acceptable.

1\Who ever has physical control of the device is allowed to take it over" - Frank
Stajano[9]

4.5. ADDITIONAL FEATURES 29

45 Additional Features

There are seweral featureswhich | had plannedto include in the project, but
unfortunately did not 't within the available timescale.

45.1 Interrupt-based events

Most, if not all, of the modern card readershave support for both bulk 10
and interrupt-based communications. One of the features| wanted to o®er
with this project was support for handling insert/remove noti cations via
this interrupt medanism. Currently this hasto beimplemented by regularly
polling the status of ead slot in the reader. This is not a particularly
elegan way of implementing this, asit meansthe processhasto be using
the processorand the USB bus ead time it cheds, rather than just blocking
on a read call.

The plan wasto have a similar mecanism to the onede ned in Section
3.2.4to allow applications to bind themselvesto a particular card or type
of card. This assaiation betweenthe card and the application would be
de ned in a con guration Te for the daemon. When a card is inserted, the
daemonwould ched it against the featureslisted for cardsin the con gura-
tion Te and if one matched then the daemonwould launch the appropriate
program to deal with it. A second,similar approac would be to have run-
ning applications be sert asyndironous messagesvhen a match for a card
is inserted, and allow them to register that while running.

4.6 Testing

Ideally, full testing would be done by emulating the hardware device and
sendingto it all the possiblecommands, and having it reply with all the
available errors, along with systematically choseninvalid responses.This is
the most robust method of testing a device driver, but requires the most
e®ort. Essettially a secondimplementation of the standard must be made
to do the emulation.

Giventhe timescaleand that a completeimplementation of even a single
protocol was not feasible, so testing all of the commands at the current
status of the project is also not possible. Appendix A contains a sample
application which reads from a Cambridge University ID Card and prints
the result. This can be usedto demonstrate multiple client applications
talking to the daemonover the sockets, and the commandsbeing translated
to the device.

30 CHAPTER 4. EVALUATION

4.7 Summary

The project hasnot, unfortunately, yet met all of the goalslisted in Section
2.2. Those that are missing, however, are just further instancesof things
which have already been completed. Enough of the project is working to
validate the architecture and to demonstratethat the systemworks in prin-
ciple. All of the major elemeris have examplesin place and the result is
de nitely simpler and easierto usethan the current alternativ es. Given the
timescaleto which | wasworking it wasnot expectedto have a fully working
product, but | have produced enoughto seethat onewould be viable.

Chapter 5

Conclusions

The aim of this project was to provide an application-level interface to
CCIDJ[7] basedsmart-card readersand ISO 7816[compliant smart-cards
which was simpler and easierto usethan the current drivers for doing so.
As set out in the Introduction chapter there is a needfor suc an interface.

5.1 Achievements

A two-part driver system for talking to ISO 7816[6] smart-cards was de-
signedand implemerted. This is comprisedof a constartly-resident daemon
processwhich is responsible for communicating directly with the smart-card
readersand cards, and a sharedlibrary for application programmersto link
to which exports all the APDU commandsto the application. Applications
communicate with the daemonover UNIX sockets.

Todemonstratethis | have written an application to readthe information
from the Cambridge University ID card. The simplicity of this application
shows how easyit is to program using this driver.

5.2 Future Work

The common theme throughout the Evaluation chapter is that the project
was considerablylarger than either | or my supervisor had anticipated. The
amournt of work involved in creating a functioning driver was a lot greater
than the time | had available. Were | to plan this same project again, |
would have started o®getting a solid USB CCID and APDU layer working
before starting on the Application Interface. Howewver, merely creating a
driver was not the main aim of the project, it wasto create a good, easy
and feature-full interface for other programmers. Given the sametime, it

31

32 CHAPTER 5. CONCLUSIONS

would have beenput to better use building on top of an existing interface
to the hardware to create a good programming library.

Bibliograph vy

[1] Ccid smart-card library. http://www.matthew.ath.cx/publications/.
[2] 1SO Standard 7816 Section 4.

[3] libusb project. http://libusb.sourceforge.net/.

[4] Linux hotplugging. http://lin ux-hotplug.sourceforge.net/.

[5] The universal serial bus. http://www.usb.org/.

[6] ISO Standad 7816/ BSI Standard 27 816. BSI, 389 Chiswick High
Road, London, W4 4AL, UK, 1987/ 1991.

[7] Universal Serial Bus Device Class Speci c ation for USB Chip/Smart
Card Interface Devices rst edition, March 2001. http://www.usb.org/.

[8] Donald E. Knuth and Silvio Levy. The CWEB System of Structured
Documentation. Addison-Wesley 3.6 edition, 1993.

[9] Frank Stajano. Security For Ubiquitous Computing. John Wiley & Sons
Ltd, Chichester, West Sussex,2002.

33

34

BIBLIOGRAPHY

APPEND A CWEBUTPUT 35

App endix A
Test Application Code Listing.

Appendix A contains the code for a test application using the project to accessthe smart card. It will
read the card data from a Cambridge University ID Card.

1. Headerle includes.

hinclude our own headerles 2i
hinclude the CCID Card library 3i

2. Our own headerTe for this program. This givesus debug output conditional on the DEBUG prepro-
cessorvariable and the assertstatemert to chedk valuesare correct.

hinclude our own headerTes 2i ~

#include "../share/debug.h"

#include "../share/log.h"

This code is used in section 1.

3. The CCID Library headers.This allows us to talk to the cardsvia a daemonwhich is managing access
hinclude the CCID Card library 3i ~
#include "../lib/library.h"

This code is used in section 1.

4. The main part of the program.
int main(int argc; char woargv)
f
hTester local variables 6i
hConnect to the daemonand requesta referenceto a card 5i;
hSenda commandto the card 7i;
hExit the program 9i;

5. Connecting to the card. We make a library call to setup the connectionto the daemon and request
accesdo a card. It returns us a referenceto the card we can useto send commandsto it.
To seeif this is a university card we ched for the existenceof Te \FD03" and its contents
hConnect to the daemonand requesta referenceto a card 5i ~
debug"Getting Acard Areference\n”);
assert(get.card_reference(&ref ; BLOCK_NEXT_AVAEDO03";
"<0-9>{8}<a-z>{2}<0-9>{4}<a-z>0.000"), 0;"Could Anot Aconnect");

This code is used in section 4.

6.
hTester local variables 6i ~
card_refref; =o a referenceto the card we are accessinge=
Seealso section 8.
This code is used in section 4.

36 CWEBUTPUT APPEND A X7

7. Sendinga command. Read the card ID from the card.

hSenda commandto the card 7i ~

debug"Sending Acommand\n};

apdu_read_binary (ref; 0; 20; carddata; & length);

carddataflength] = \0' ; =o make sureit is null terminated o=

printf ("TheACardAID: A%s" carddata); =o print it out. Its mostly ascii a=
This code is used in section 4.

8.

hTester local variables 6i +”~
char ocarddata = malloc(21);
int length;

9. Exitting the program. After connecting and sendinga command, we exit the program.

hExit the program 9i ~
release card (ref);
free(carddata);
debug"Exitting");
return 0;

This code is used in section 4.

APPENDB CWEBUTPUT 37

App endix B
Project Code Examples.

Appendix B cortains excerpts of code from the project. Theseexcerptsare individual sectionswhich are
referred to in the body of the report, and have beentaken from the documen produced using Knuth and
Levy's CWEBystem of structured documertation to apply markup in TEX.

The completelisting of sourcefor the project is included on the attached CD, or can be downloaded from
http://www.matthew.ath.cx/public ations/ .

38 PROCEDURE LISTEN _SOCKETS() APPENDB x20

20. Pro cedure listen_sackets(). Loop, running select (2) over the sockets and handling the results from
them.

void listen_sackets()
f
hlisten_sackets Local variables 22i;
for (;;) f = Loop forever here unlesstold to exit by a control messager=
hAdd all the active sockets to an fd_set 23i;
timeout:tv_se = 1;
timeout:tv_use = 0;
assert((rc = selet (sount; &sccks; o; o ; &timeout)) , 0;"Select AError");
=a ched for things to read o=
debug"Connections AonA%dsockets." ;rc);
debug"checking AusbAdevices Afor Ainterrupts");
check_ushinterrupts ();

if (0° rc) contin ue; =0 nothing to read o=
f =a read from the remaining sockets. o=
if (FD_ISSE{master_sacket; & sacks)) =n the master socket o=

f
hAccept a new connection 24i;

g
if (FD_ISSETcontrol_sacket; & sacks)) =a the control socket o=
f
if (handle_control_messag¢)) return ; =o handle control messageand exit if told to o=
g
current = client_root;;
while (= 6 current) =a the client sockets o=

f
if (FD_ISSETcurrent_sacket; &sacks)) f

if (: service_client (current)) f =a connection should be closed o=
slog("Client Aconnection Apid: A%d)closed" ;current_pid);
close(current_sacket); =o closethe connection o=
client_root = removelient (client_root; current); =a remove the client from the list o=
free(current);
current = o,
g
else current = current_next; =a go onto the next client o=
g
else current = current_next; =o go onto the next client o=

g
g
g
g

X34 APPENDB FORK FROM CONSOLE 39

34. Fork from console. We have to fork (2) a child proccessand the exit the parert to return to the
console,then setsid(2) to disassaiate ourselesfrom the tty we were spavned on. Finally, we chdir (2) to
the root directory sothat Tesystems can be unmounted.

hFork from console34i ~
debug"Leaving Aconsole....");
pid = fork ();
assert(pid , 0;"Error Ain Afork");
if (0< pid) exit(0);
setsid();
chdir ("/");
umask(0);

This code is used in section 32.

40 FUNcTION DECODE_APDU _REQ() APPENDB x81

81. Function decodeapdu_req(). Turns a ccid_requeststructure into void @ bu®erfor writing to a USB
device. The function returns falseif an error occurred.

NOTE: may malloc(2) bu®er. If the function returns true you MUST usefree(2) to deallocate it when
you are nhished.
bu®er A pointer to a void @ bu®er

req The structure to decale to the bu®er

hUSB Internal Functions 68i +~

bool decode apdu_req(ccid_requestareq; void acbu®er)

f
char header[4]; =o [0]= CLA, [1]= INS, [2] = P1,[3] = P2 &=
header[0] = # 00;
header[1] = * 00;
switc h (reg.apdu:apdu_type) f
case APDU_AUTHENTICAREPDU authenticate decale o0i;
case APDU_BINARYAPDU binary decade 82i;
case APDU_CHALLENGEPDU challengedecade oi;
case APDU_CHANNHMBAPDU channel decade oi;
case APDU_DATAAPDU data decale oi;
case APDU_RECORIAPDU record decale oi;
case APDU_SELECHAPDU selectdecade oi;
case APDU_VERIFYWAPDU verify decade oi;
default : return false;

g
return true;

x82 APPENDB FUNCTION DECODE _APDU _REQ () 41

82. Decading an APDU Binary command.

hAPDU binary decade 82i ~
switc h (reg.apdu:binary :mode) f

case READ
if (0° header[1]) header[1] = * BQ =a setthe INS to READ BINARY o=
case ERASE
if (0~ header[1]) header[1] = * OE =a setthe INS to ERASE BINARY o=
obu®er = malloc(3 + 4); =a payload + headersize o=

((char o) sbu®ern)[6] = (reg-apdu:binary :length & * FF);
((char @) sbu®er)[5] = ((req.apdu:binary :length & * FFOQ A 4);

((char ©) sbu®er)[4] = O; =o Lc = null, Data = null, Le = reg.apdu:binary :length o=
= bu®er[0]= 0 => extendedformat Le o=
break ;
case WRITE

if (0° header[1]) header[1]= * DQ =a setthe INS to WRITE BINARY &=

case UPDATE
if (0~ header[1]) header[1] = * D =n setthe INS to UPDATE BINARY &=
obu®er = malloc((reg-dsize& * FFFB + 3+ 4); =a payload + payloadsize+ header o=
((char ©) obu®er)[6] = (reg-dsize& * FPF);
((char @) sbu®er)[5] = ((req.dsize& * FFOQ A 4);

((char ©) sbu®er)[4] = O; =o Lc = reg.dsize, Data = reg.data, Le = null o=
== bu®er0]= 0) extendedformat Lc o=
void sb= obu®er+ 7; = WTF?! o=
memcpy(b;ebu®er, req_dsize);
break ;
case APPENDdefault : return false;

g
header[3] = (reg-apdu:binary :o®set& * FPF);
header[2] = ((reg-apdu:binary :0®set& * 7FO0) A 4);
memcpy(cbu®er; header; 4);
break ;

This code is used in section 81.

42 FUNCTION GET_CARD _REFERENCE () APPENDB x88

88. Function getcard_reference().

This function allows you to requesta connectionto a smart card. You can specify the card to requestin
seweral di®erert ways, someof which are blocking, and someare non-blocking.

Blocking requests:

You can make a request for the next available smart card. This requestwill block until either a smart
card is inserted, or onein useby a di®erert card is made available.

Non-Blocking requests:

You can make a requestwhich will return a card if there is one available, but will return immediately with
a NOT_AVAllmessagdf there are no free cards.

Specfiying cards

Smart cards can be speci ed more precisely by giving a pattern to match describingthem. If you specify
a le and contents, then any candidate card to be returned will be cheded to seeif that Te exists, and if
the contents match the string given in the secondparameter. If Te ~ =, then no cheds will be performed.
Otherwise, if content © = then the TTe will be cheded for existance,but not for cortent.

Possible Requests

Request Blocking Description
BLOCK_NEXT_AVAiles Blocks until a card is available and returns a descriptor.
AVAIL no Returns the error NOT_AVAIIf a card isn't available. This will not block

hExported Library Functions 88i ~

int getcard_referenae(card_ref aref; CARD_REQUESTest, char @'le ; char acontent);
Seealso sections 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 119, 121, 123, 125, 127, and 129.
This code is used in section 85.

89. CARD_REQUERDe de nition. This type selectswhat type of requestto make.

hLibrary Type De nitions 89i ~
typedef enum f
AVAIL BLOCK_NEXT_AVAIL
g CARD_REQUEST;
Seealso section 90.
This code is used in section 85.

90. Card references.A card referencecortains the information about how to connectto one smart card.
A card referencemust be retrieved from a getcard_reference() call, and should be relinquished with a
releasecard() call when nished with.
Sincesockets are being usedto identify cardsin the cardd, this is merely a socket identi er and info block.
hLibrary Type De nitions 89i +~
struct card_ref_struct f
struct sockinfo_struct f
sa family _t family ;
char scckpath[MAXSOCKETPATH
g info;
int sacket;
g

typedef struct card_ref_struct card_ref;

x91

91.

APPENDB FUNCTION GET_CARD _REFERENCE ()

Implementation of function.

int getcard_reference(card _ref oref; CARD _REQUEST request char a'le ;char ncontent)

f

sacklentlen;

pid_t pid ;

int rc;

debug"socket: A%d" ref_sacket);

ref_sacket = sacket(AF_UNIXSOCK_STREAM

debug"getting Asocket, Aerrno: A(%d)A%s" errno ; strerror (errno));

assert(ref_sccket > 0;"Can't Aget Asocket Afd");

debug"socket: A%d" ref_sacket);

ref_info :family = AF_UNIX

strepy(ref-info :sackpath; SOCKETD)R

strcat (ref-info :sackpath; "/master”);

debug"master Asocket: A%dA%s" ref_sccket; ref_info :scckpath);

len = sizeof (ref.info:family) + strlen(ref.info :sackpath) + 1; = connect o=

debug"connecting Ato Adaemon’);

if ((rc = connect (ref_sacket; (struct sackaddr @) &(ref_info);len)) < 0) return rc;
=a sendour pid o=

pid = getpid();

debug"sending Apid A%d)" ; pid);

if ((rc = send(ref_sacket; &pid; sizeof (pid_t);0)) < 0) return rc;

return O;

43

44 LOGGING FUNCTIONS APPENDB §136

136. Logging functions.
This Te contains functions for sendinglog messagedo syslog,and to perform conditional logging.

137. Header les and global variables. We need syslogheader les, and also debuggingcode. We store a
static global variable which governs whether to use syslogor to print message®n stderr.

#include <syslog.h>
#include <stdarg.h>
#include <errno.h>
#include "log.h"
#include "debug.h"
bool _do_syslag = false;

138. Exported interfaces. The Te log.h exports seweral macrosand functions to other Tes.
(log.h 138) =
#ifndef _ CCID_LOG_H
#dene _ CCID LOG H
#include "types.h"
ifdef DEBUG
#de ne assert(a;h) do
{
bool T= g
fprintf (stderr;"[Assert] A%s\n"; T ?"true" :"false");
if (—__T) real_assert(b);

}
while (0)
else
#de ne assert(a;b) if (—(a)) real_assert(h)
endif
void real_assert(char xmessage;
void slog(char «fmt; :::);
void setupsyslay(bool log);
endif

139. Procedurereal_assert().
void real_assert(char xmessagé

if (0% errmo) {
char xerrstr = strerror (errno);
slog("[Assert] Afailed Awith Aerrno A%d/%sA%s\n"; errno ; errstr ; message;

else slog("[Assert] Aailed: A%s\n"; messagg;
ifdef DEBUG
exit(1);
endif
}

x140 APPENDB LOGGING FUNCTIONS 45

140. Procedure slog().
void slog(char gfmt; :::)
f
va_list arys;
va_start(args; fmt);
if (_do_syslog) wvsyslog(LOG_NOTICEnt; args);
else f
fprintf (stderr; "[ccid-cardd] ~ A');
vfprintf (stderr; fmt; args);
forintf (stderr;"\n");
g
va_end(args);

g

141. Procedure setup_syslog().

void setup_syslog(bool log)
f

_do_syslog = log;
if (log) openlog(“ccid-cardd" ;0;LOG_DAEMON

g

46 CCID STRUCTURES

146. CCID structures. These structures are a generic wrapper which

protocols.

hDe nitions of CCID structures 146i ~
struct ccid _request _struct f
PROTOCOL _TYPE protocol;
union f
struct apdu_requeststruct apdu;
g
int dsize;
char odata,;
g
struct ccid _resp onse_struct f
PR OTOCOL _TYPE protocol;
union f
struct apdu_respnsestruct apdu;
g
int rsize;
char ordata;
g,
typ edef struct ccid _request _struct ccid _request ;
typ edef struct ccid _response_struct ccid _resp onse;
This code is used in section 144.

147. APDU BINARY structure. EncodesAPDU BINARY commands
hDe nitions of APDU structures 147i ~
struct apdu _binary f
MODE maode;
int o®set,
int length;
g
Seealso sections 148, 149, 150, 151, 152, 153, 154, 155, and 156.
This code is used in section 144.

148. APDU RECORD structure. EncodesAPDU RECORD commands

hDe nitions of APDU structures 147i +~
struct apdu_record f
MODE maode;
int ef;
RECORD_TY{te;
int record;
int length;
g

APPENDB x146

may contain one of seweral

x149 APPENDB CCID STRUCTURES

149. APDU DATA structure. EncodesAPDU DATA commands

hDe nitions of APDU structures 147i +°~
struct apdu_data f
MODE maode;

TAG_TYRagtype;
int tag;
int length;

g

150. APDU SELECT structure. EncodesAPDU SELECT commands
hDe nitions of APDU structures 147i +°~
struct apdu _select f
SELECT _MODE maode;
int rtemplate;

int rsize;
union f
struct f
FILE_TYPEype;
int DE
g
struct f
bool relative;
g
g

g

151. APDU VERIFY structure. EncodesAPDU VERIFY commands

hDe nitions of APDU structures 147i +°~
struct apdu_verify f
bool glokal;
int reference;

g9,

152. APDU AUTHENTICA TE structure. EncodesAPDU AUTHENTICA TE commands

hDe nitions of APDU structures 147i +~
struct apdu_authen ticate f
bool internal ;
bool glotalsecret;
int algorithmid ;
int secretid;
int respnselength

g

153. APDU CHALLENGE structure. EncodesAPDU CHALLENGE commands

hDe nitions of APDU structures 147i +~
struct apdu _challenge f
int maxlength;

g

47

48 CCID STRUCTURES APPENDB x154

154. APDU CHANNEL structure. EncodesAPDU CHANNEL commands

hDe nitions of APDU structures 147i +~
struct apdu_channel f
bool open;
int channelng;
g

155. APDU REQUEST structure. This is a union of the various APDU structures for the di®eren
commands. the apdu_type "eld de nes which member of the union should be accessed.

hDe nitions of APDU structures 147i +~
struct apdu_request _struct f
int apdu_type;
union f
struct apdu _binary binary;
struct apdu_record record;
struct apdu_data data;
struct apdu_select selet;
struct apdu _verify verify;
struct apdu _authen ticate auth;
struct apdu _challenge challenge;
struct apdu_channel channel;
g
g,

156. APDU RESPONSE structure. This encadesresponsesto an APDU command.

hDe nitions of APDU structures 147i +°~
struct apdu_response_struct f
APDU _TYPE apdu_type;
int status;

9,

157. Functions which sendand/or receive CCID structures.

hDeclarations of CCID functions 157i ~
int sendccid_request(int skt; ccid _request reg;ccid _resp onse ores);
int getccid_request(int skt; ccid _request woreq);
int sendccid_resmpnse(int skt; ccid _resp onse res);

This code is used in section 144.

x162 APPENDB FUNCTION SEND_CCID_REQUEST() 49

162. Function send_ccid_request(). This may malloc(2) reg-rdata. If the return value is 0 and
reg-rdata 6 © then you must free(2).

int get_ccid_request(int skt;ccid _request greq)
f
int ret = 0O;
debug("get Astructure");
if ((ret = recv_bytes(skt;(void ©) req;sizeof (ccid _request))) < 0) return ret;
= get structure o=
print_ccid_request(req);
ret = 0;
debug("get AdataA(size: A%d)"; req_dsize); =0 get data o=
if (07 req.dsize) f
req-data = ©;
return O;
g
else f
req-data = malloc(reqdsize);
if ((ret = recv_bytes(skt; req-data; req_dsize)) < 0) f
debug("Freeing...");
free(req-data);
req-data = B;
return ret;

g
debug("Got Adata");

g
return O;

g

50 FUNCTION SEND_CCID _REQUEST () APPENDB x162

Part Il PersonalProject Proposal
CCID Smart-card library

Pro ject Originator:

Pro ject Supervisor:

Signature:

Director of Studies:

Signature:

Pro ject Overseers:

Matthew Johnson
Trinity Hall
mjj29@cam.ac.uk

May 6, 2004

Dr. M. Kuhn

S.J. Murdoch

Dr. S. Moore

Dr. J. Baconand Dr. J. Daugman

Project Proposal

Background

The idea (kindly suggestedby Dr Kuhn) is to dewelop a driver systemfor GNU/Lin ux
for accessingJSB-basedsmart-cardsand readers,which can handle multiple devicesand
cardsand multiple registeredapplications using those cards.

The cards are ISO-7816smart-cards, a subsetof which are usedin both University
cardsand EMV -compliart credit cards, the readersare genericCCID?-compliart USB
smart-card readers.

The current situation with Linux smart-cardsupport is a seriesof disjoint driversfrom
the Musclecardproject, mainly designedfor serial or parallel connecteddevices. They
alsodo not support having multiple smart-cardstalking to multiple separateapplications.
It is to be expected that with the CCID standard (previous smart-cards used mostly
custom protocols) and the easeof use of USB, these deviceswill rapidly dominate the
marketplace.

There are se\eral parallels between smart-cardsand USB devices,particularly with
how they are managedon insertion. There is a program for Linux called hotplug, which
managesUSB devices. This has a daemonwhich runs in the badkground, and receives
noti cation from the kernelabout USB ewerts, suc and insertion of a new device. Hot-
plug getsfrom the devicea USB class,a vendorID and a product ID. The daemonchedks
a databaseof those ID strings, and addsthe appropriate modulesto the kernelto man-
agethe device,and also can launch programswhich have beenregisteredas handling a
certain classof device.

What is neededfor smart-cardsis a genericlibrary for accessingsmart-cards, which
will also perform the samejob as hotplug doesfor USB devices. More formally, it will
managethe permissionson smart-card readerdevicessud that multiple applicationscan
securelyaccesgheir cards. Applications can also be set as handlersto be launched for
certain typesof cardsor can be run themsehesto listen for the next card inserted. This
is similar to the hotplug program for USB devices,howeer, there's is not an obvious
architecture in placefor classifyingcardsaswith USB devices.

1Europay-Mastercard-Visa: http://www.emvco.com
2Chip/Smart-Card Interface Devices- speci cations on
http://www.usb.or g/develogers/devclassdocs/ccid_classsgc_1_00a.df

Pro ject Aim

The aim of the project itself will beto producea driver, split into two sections,which can
be usedby applications wanting to accessmart-cards. Sometrivial test programswill
be usedto demonstratethis. The two sectionsof the driver would be a daemonprocess,
similar to hotplug - and launched by hotplug when a smart-card reader was connected.
The secondpatrt is a library which would be usedby application software to provide an
API for accessinghe smart-card, and for communicating with the daemon.

The daemonpart of the driver would be launched by hotplug whena CCID-compliant
readeris connected. This would then wait for insertion of a card and dependingon various
settingsit would hand over cortrol of the card to someapplication. This could either be
a one o®application notifying the driver that it is waiting for the insertion of the card,
or pre-registeredasthe application which handlesthat type of card.

The other sectionwould be a library usedto accesghe cards. This would be used
by any application wanting to usethe driver, and would communicate with both the
daemonprocessand directly to the card when cortrol was handedover. Sincethe CCID
speci cation speci esseeral levelsof accesgo the card, the API provided by the library
functions would have to allow accessat any of these levels of abstraction. Obviously
an API speci cation for useby other programmers(in the form of Unix Manual pages)
should be provided.

There are seeral challengeshere. Firstly, at a basic level | needto work on by
programming in C, sincel haven't done much of this. Moving from Pascal and Java
shouldn't be too much of a problem, howewer. Secondly as| have said, USB provides a
nice interfacefor classifyingdevices.The CCID specdoesn't provide anything equivalert.
There are se\eral possiblestrategiesto look at, sud as allowing applicationsto provide
scripts in somelanguagewhich would decideif a card was usable by that application.
There are obvious security issuesherewhich needto be thought through.

The applications that will be usedto demonstratethe library will mainly be trivial
test applications, however, | shall include a tool which is usefulin itself, which is onefor
performing interactive sessionsith the card.

Assessment Criteria

A typical application usefor this would be somethinglike a Linux Pluggable Authentica-
tion Module for authertication, which would require a card insertedto log in. Succes®f
this project will be determinedwhenthe test applications written using seeral di®eren
levels of the API can accessardsindependertly and reliably.

Timetable
Weeks Work
MichaelmasTerm
1-2 USB & CCID specreading+ C practice
3-4 Designof daemonAPI, library API, test speci cations
5-6 Implemenation of daemon
Milestone: daemoncan report details of card on insertion

Christmas Holidays

Lent Term
Deliv erable:

7-8

Milestone:

9-10

11-12

13-14

Easter Holidays

Easter Term
15-16
17-18
18-19
Deliv erable:

Implemertation of library

ProgressReport

Implemertation of library

Library functions which can commnunicate with the daemon
and the card

Testing & collecting scalability data

Writing Up

Writing Up

(Revision)

Writing Up

Time usedfor nishing dissertation if necessary
Time usedfor nishing dissertationif necessary
Final dissertation

Resources

| shall be doing most of the dewelopmernt on my personalmadines. Thesecompriseof
a Dell Intel-basedlaptop and a recert AMD PC both running Debian GNU/Lin ux, with
the Tes stored on a Via Epia madine with redundart storage.

Backup Arrangemen ts

Badkup arrangemers will be madeusinga selectionof madinesdistributed acrossse\eral
collegesand departmerts, and the University Archive sener. Code will be storedin CVS
on one madine, with cortinuousmirroring on a separatemachine, with nightly badkups
of the CVS repository taken to the other madinesdistributed acrossCambridge.

Special Resources
The Security Group are providing seweral CCID Smart-Cardreadersand ISO-7816smart-

cards.

Sup ervisor

Steven Murdoch of the Security Group hasagreedto superviseme, at Dr Kuhn's sugges-
tion. Dr Kuhn will alsobe providing technical advice.

