
Matthew Johnson

CCID Smart-Card Library

ComputerScienceTripos,Part II

Trinity Hall

2004

Proforma

Name: Matthew Johnson
College: Trinit y Hall
Project Title: CCID Smart-Card Library
Examination: Computer Science Trip os,

Part I I. 2004
Word Count: 9185 1

Project Originator: Dr. M. Kuhn
Supervisor: S. J. Murdoch

Original Aims of the Pro ject

The original aim of this project was to produce a user space library for
accessingthe features of ISO 7816[6]-basedsmart-cards via USB readers.
This library would beavailable to programswhich usethesecards,to provide
an easy and consistent interface to their features, and would also perform
securemultiplexing betweenprograms and card readers.

Work Completed

I have completed a framework for a user space library for accessingISO
7816[6]-basedsmart-cards, and have implemented enough code within the
framework to demonstrate its operation. A description of all that has been
completed appears in this dissertation, and selectedexcerpts of code form
the appendices.

Special Di±culties

None.

1This word count was computed by ps2ascii dissertation.ps | tr -cd
'0-9A-Za-z nn' | wc -w

i

Declaration

I, Matthew Johnson of Trinit y Hall, being a candidate for Part I I of the
Computer ScienceTrip os,hereby declarethat this dissertation and the work
described in it are my own work, unaided except as may be speci¯ed below,
and that the dissertation does not contain material that has already been
usedto any substantial extent for a comparablepurpose.

Signed

Date

ii

Con ten ts

1 In tro duction 1

2 Preparation 3
2.1 Familiarisation with Tools . 3
2.2 Requirements Analysis . 3
2.3 Speci¯cations . 4

2.3.1 CCID Class-spec . 4
2.3.2 ISO 7816 . 5
2.3.3 APDU Syntax . 6

2.4 Architecture . 8
2.5 Choice of Tools . 8

3 Implemen tation 11
3.1 Architecture . 11

3.1.1 Security Implications 13
3.2 Library . 13

3.2.1 Example APDU Methods 14
3.2.2 Implementation of Library Functions 14
3.2.3 Library Documentation 15
3.2.4 Selectinga Card . 15

3.3 Daemon . 15
3.3.1 UNIX ProcessManagement 18
3.3.2 Socket Communication 18
3.3.3 Managing USB devices. 19
3.3.4 USB Protocols . 20

3.4 Library-Daemon Protocol . 22

4 Evaluation 25
4.1 Serviceability . 25

4.1.1 Library API . 25

iii

4.1.2 Application-Daemon Protocol 26
4.1.3 USB Code . 26
4.1.4 T=0 and APDU . 26

4.2 Simplicit y . 26
4.3 Stabilit y . 27
4.4 Security . 27
4.5 Additional Features . 29

4.5.1 Interrupt-based events 29
4.6 Testing . 29
4.7 Summary . 30

5 Conclusions 31
5.1 Achievements . 31
5.2 Future Work . 31

Bibliograph y 33

App endices 35

Pro ject Prop osal 51

iv

List of Figures

2.1 Example File Structure (taken from ISO 7816[2]) 6
2.2 Di®erent File Types(taken from ISO 7816[2]) 7

3.1 Architecture Overview Diagram 12
3.2 Example Library Interfaces 14
3.3 Example Output from CWEB 16
3.4 CWEB SourceCode for Figure 3.3 17
3.5 APDU Command Structure (taken from ISO 7816[2]) 21
3.6 Structures for Storing APDU Commands 23

4.1 Example Application Code 27

v

vi

Chapter 1

In tro duction

Until recently , the smart-card industry hasn't had a consistent set of stan-
dards or speci¯cations for their cards. This has led to a large number of
proprietary solutions, all of which are incompatible and require di®erent de-
vice driversand interfacing software. This hasmadeit very di±cult to write
drivers to support them and alsodi±cult to produceapplications which can
work seamlesslyacrossmany di®erent typesof card. The samefeaturesmay
not be supported, and the APIs for accessingthesefeatureswill be di®erent.

There are projects available that attempt to solve this. The MuscleCard
Project1 for the GNU/Lin ux operating system is one of these which has
been quite heavily developed. However, they all su®er from the problem
that in having to support all the available typesof smart-card, they tend to
be quite bloated and di±cult to use.

There are several standards governing the design of and interface to
smart-cards. ISO Speci¯cation 7816[6]describes how to build smart-cards
from the electrical and physical level, to the protocolswhich should be used
on top, and has a consistent framework for extending the protocols with
proprietary commands. This speci¯cation is endorsedby people like the
Eurocard-Mastercard-Visa(EMV) group who havedesignedthe smart-cards
built into most credit and debit cards, and is likely to be used for most if
not all new smart-cards developed.

A secondproblem with the majorit y of smart-card readersis with their
interface to the computer. Most of them have used either the parallel or
serial bussesto connect to the computer, or even a custom connectiondirect
onto the motherboard. This raisesyet more problems as those IO ports do
not easily multiplex multiple devicesseamlessly, and are in short supply.

1http://www.lin uxnet.com/m usclecard/

1

2 CHAPTER 1. INTR ODUCTION

This hasall beenchangedwith the popularisation of the UniversalSerial
Bus (USB)[5]. USB hasallowed machines to have asmany devicesattached
as necessary, and with a consistent cross-platform interface. Due to its
extensibility and improved speed,USB is rapidly replacing all the legacyIO
connectors,and is likely to be the only method that needsto be supported in
the near future. The USB Chip/Smart-Card Interface Device (CCID) Class
speci¯cation givesa protocol for accessingthesedevicesover the Universal
Serial Bus[7].

With both these things in mind, Dr Kuhn and I decided that a clean
implementation of the ISO and CCID speci¯cations to interface with USB-
basedsmart-card readerswas necessary. I have primarily developed this for
the GNU/Lin ux operating system, but sinceI have written code entirely in
user-space,the only platform-speci¯cit y is in the USB interface, which is
being provided by LibUSB[3] { which supports a wide range of UNIX -like
operating systems.

Finally, a feature which has been entirely missing from the previous
generation of drivers is multiplexing of applications talking to cards. This
project provides a systemwheremultiple smart-cards can be in useby mul-
tiple applications at any onetime, and wherethe driver systemmanagesthe
insertion/removal of cards, and enforcesthe separation of applications and
the cards they are accessing.

Chapter 2

Preparation

This sectionsummarisesthe work undertakenprior to the implementation of
the project. Current systemsin this area are discussedand I brie°y outline
the requirements of my system. I also list the tools used in the production
of the project.

2.1 Familiarisation with Tools

The tools I decidedto usefor this project are listed in Section2.5. Several of
them were either new to me, or I had not usedthem for sometime. There-
fore, before starting to work on the project I had to do somepreliminary
work to familiarise myself with them. I have a fair amount of experience
with LATEX and C+ + , but not with CWEB , and I had not used C for sev-
eral years. I wrote a selectionof programs to familiarise myself with using
CWEB . These programs were also used to investigate how the C standard
libraries worked to handle UNIX sockets and accessto USB devices,which
are both primitiv es that I used during the project. This took a few weeks
of my initial preparation time.

2.2 Requiremen ts Analysis

Before starting to write the project I had several meetings with my super-
visor, as well as Dr Kuhn, who suggestedthe project, to discusswhat they
thought would be useful in this area. I also investigatedwhat was currently
available in this area, and read through the ISO speci¯cations so that I had
an overview of how they all worked.

3

4 CHAPTER 2. PREPARATION

The basic functionalit y that the project neededto provide is to allow
the applications to accessall the high-level features of the card which are
speci¯ed in [6]. There are several high-level protocols which are speci¯ed
and di®erent cardsmay implement a di®erent selectionof them (seeSection
2.3.2 for more details). Ideally the project should be able to support all of
thesefeatures,and be able to support the useof proprietary vendor-speci¯c
extensions.

In addition to the above, to make this project stand out from existing
systemsthe features should be presented with as much abstraction as pos-
sible. Therefore, I wanted to provide the accessto featuresas function calls
in a high-level language,and hide as many of the implementation details as
possible. This is relevant, sincethe underlying wire-protocol has two di®er-
ent variants (mentioned in Section 2.3.2), which do not needto be exposed
to the application.

Finally, we wanted to provide an additional security layer which allowed
multiple applications to be running accessingmultiple smart-cards, without
having to provide the applications with direct accessto the devicesconcerned
so that it is possible to ensure that the security policy isn't broken. This
was to be done by splitting the driver into several sections,with only part
of the driver having privileged accessto the devices.

2.3 Speci¯cations

There are two main sets of speci¯cations that cover this area. The ¯rst
is the USB CCID Class-Spec, which speci¯es a USB Class-ID for CCID-
basedsmart-cards, and contains the information about how to encapsulate
the higher-level protocols on the USB bus. The secondis an ISO standard
covering the application-level protocols which are common regardlessof the
bus usedto connect the device.

2.3.1 CCID Class-sp ec

The USB Chip/Smart-Card Interface Device Class-Spec[7] allocates a new
USB Class-ID of 0x0B. This classidenti¯es all deviceswhich are USB CCID
readers. This classID can be detected by the Linux operating system and
can notify programswhen devicesof this type are inserted or removed. The
class speci¯cation also de¯nes interfaces for getting extended information
about the capabilities of a device,such assupported voltagesand protocols.
It also, importantly , includes the information about how to encode the ISO

2.3. SPECIFICATIONS 5

speci¯cations onto the USB bus, and how to power up the deviceto get the
Answer To Reset.

The Speci¯cations list three endpoints which a CCID reader may sup-
port: Bulk-In and Bulk-Out, and Interrupt. The ¯rst two carry the com-
mands to the device and are used by the current projects attempting to
implement drivers. The Interrupt endpoint is a feature which hasonly been
implemented in the latest version of LibUSB and carries out-of-band data
from the smart-card reader, allowing programs to be noti¯ed of events such
as card insertion and removal.

Communicating with the card reader is done via a message/ response
structure. The messagesde¯ned in the classspeci¯cation for accessingthe
card include powering up and down the card, getting the status of a slot
on the reader, setting various parameters,and sendingblocks of commands,
such as an APDU command. There is also a separatemessagefor secure
(PIN-restricted) operations. I used these messagesand the corresponding
responses.This is investigatedin more detail in Chapter 3 Section3.3.4,and
the code implementing can be seenin the completesourcedocumentation[1].

Most of the options which are de¯ned in here are not of interest to the
application programmer. They specify how a particular card reader should
be communicated with, and usersof the library wish this to be completely
transparent and work with any compliant reader device.

2.3.2 ISO 7816

The ISO 7816[6]speci¯cation outlines several di®erent protocols for access-
ing the cards at various di®erent levels, and specify what operations are
valid at each level.

At the highest level is the interface that application programmerswant
to access. This is what is exposed to programmers via the library API.
The most common interface, and the one I focussedon, is the Application
Protocol Data Unit (APDU) protocol. This is based on operations on a
structure which has ¯le-system-like semantics, and contains read and write
operations on these ¯les as well as more specialised commands. A more
complete description of this protocol is given below in section 2.3.3.

The other protocols include TPDU and an SQL-like syntax for accessing
the smart-card like a database. TPDU is a similar protocol to APDU, but
lower level and supported by somecard which don't support APDU. I did
not initially implementing these protocols, but the design of the system
will keep in mind extensibility to theseprotocols as well. The speci¯cation
de¯nes methods to ¯nd out the capabilities of the various cards. These

6 CHAPTER 2. PREPARATION

will be exposed to the programmer, and used to verify that a particular
command can be usedon that card.

Those protocols are all application-level protocols which needto be ex-
posed to the applications via the driver. The standard also de¯nes lower
level protocols which de¯ne how the cards communicate with the reader.
Called T=0 or T=1, the project handles thesetwo internally, so that the ap-
plication programmer doesnot needto specify which oneis being used. The
protocol in use is determined by the data sent as the answer to the reset
command. Answer To Reset is an important part of all the protocols, and
encodesa lot of data about the card.

At a lower level still the ISO standard also de¯nes the electrical and
physical characteristics of the cards, but that is the domain of the CCID
reader, and not relevant to this project.

2.3.3 APDU Syntax

Files

The data on the smart-cards which support APDU is, at the Application
Protocol level, organised in a ¯le hierarchy, or tree structure. This starts
with the Master File (MF) as the root node of the tree, and a binary tree
below it of Dedicated Files (DFs). The Master File is a mandatory DF used
as the root node of the tree. In addition, any of the DFs my have associated
Elementary Files (EFs). There are two types of EF, Internal EFs contain
data which is usedby the processingunits on the card and Working EFs are
purely data storagefor external programs. Figure 2.1 shows an example¯le
layout.

Figure 2.1: Example File Structure (taken from ISO 7816[2])

APDU commands operate on a particular EF. This may be speci¯ed
implicitly - the speci¯cation has the notion of a current ¯le on which op-
erations will be performed is no ¯le is speci¯ed explicitly . Or, it may be
speci¯ed explicitly in the command by ¯le identi¯er. The ¯le identi¯er is a

2.3. SPECIFICATIONS 7

two byte number, which is unique among all DFs and EFs at a particular
branch point in the tree. As with normal ¯le structures, EFs may have the
same ¯le ID if they have di®erent paths to them in the tree. The MF is
always referred to by the reserved value Ox3F00.

Elementary ¯les can also have several di®erent structures, although not
all cards support all of the di®erent structures. A transparent EF is a stan-
dard block-accessed̄le with no explicit internal structure. Recordstructure
EFs are explicitly encoded as being made up from individual records(¯xed
or variable length) and which can be organised either linearly or cyclicly.
There is the notion of a current record pointer which indicates the record
currently being accessed.All of the record commandscan either implicitly
use the current record, or select the record relative to the start and end of
the ¯le, or the currently selectedrecord. Figure 2.2 shows thesedi®erent ¯le
accessmethods.

Figure 2.2: Di®erent File Types(taken from ISO 7816[2])

APDU Commands

APDU commandsare structured as messagesbetween the application and
the smart-card. The application sendscommand messagesto the device,
which then sendsa responseback. The command messagecontains a com-
mand headerwhich describesthe commandand its ¯xed length parameters.
It and may alsocontain an attachedvariable length data item and the length
of any expected response. The responseheadercontains a status ¯eld, and
may contain a variable length response.

There are four typesof APDU command message.The simplest type is
a 4-byte commandheader. with no attached data, and no expectedresponse
data. Type 2 and 3 either contain a 2 byte expected responselength, or a 2
byte length and attacheddata ¯eld of length bytes asa commandparameter.
The ¯nal type contains both a data parameter and an expected response
length. This ¯nal type is 8-bytes plus a variable length data ¯eld.

8 CHAPTER 2. PREPARATION

The exact coding of each command is given in more detail in Chapter
3 Section 3.3.4. The code for managing the encoding and decoding them is
visible in Appendix B Section 81.

2.4 Arc hitecture

The USB subsystemon GNU/Lin ux frequently usesa package called hot-
plug1 to managedevicesas they are inserted or removed. This involves a
daemon which runs and constantly monitors the USB bus. When a new
device is inserted into the machine hotplug tries to establish which modules
are required to useit, and possibly launchesexternal programs to deal with
it.

I wanted to extend this architecture to the smart-cards and readers.
This would allow programs to register themselvesas handlers for particular
smart-cards, and to be noti¯ed of the insertion and removal of smart-cards,
and for my program to launch them if necessary.

2.5 Choice of Tools

This project is designed to be used by a lot of other programmers, and
incorporated in a range of other programs, typically those written for the
GNU/Lin ux Operating System. Traditionally programs for UNIX -like Oper-
ating Systems,particularly those such as device drivers, have beenwritten
using the C programming language,and to allow this project to be usedin as
wide a rangeof applications asnecessary, I decidedto usethe most common
language. Many of the programs which could bene¯t from this project are
already in existenceand in the most part useC.

For documentation purposesI decided to write the program using the
CWEB System of Structured Documentation, by Knuth and Levy[8]. This
documents and marks up the source using the TEX typesetting language.
Documentation and comments are interspersed with the code throughout
the source ¯les, and later converted into pure TEX and pure C. This is
compiled using the GNU Compiler Collection C compiler2, using GNU make
to manage the build process. The source ¯les were edited using the Vi
IMproved editor with C syntax hi-lighting.

Development was performed on a selection of machines, either my per-
sonal machines running Debian GNU/Lin ux, or Public Workstation Ma-

1http://lin ux-hotplug.sourceforge.net/
2http://gcc.gn u.org/

2.5. CHOICE OF TOOLS 9

chines running Red Hat Linux and managedby the University Computing
Service. The sourcewas stored in the Perforce3 Revision Control System
on my personalserver running Debian GNU/Lin ux, but nightly generation
backups were taken and distributed to a number of other machines dis-
tributed over Cambridge, including the University Archive Server (Pelican)
and the machines of the Student Run Computing Facilit y4. This process
was automated using logrotate and a custom POSIX SH Shell script.

Perforcewas chosenover systemssuch as CVS or RCS due to a number
of improved features, including a very good graphical environment, and
although I never had to use any of the roll-back features it was simple to
useand made backups and developing on several machines very easy.

3http://www.p erforce.com/
4http://www.srcf.ucam.org/

10 CHAPTER 2. PREPARATION

Chapter 3

Implemen tation

This chapter describesthe implementation of a systemto meet the require-
ments given in Chapter 2 Section 2.2. The architecture of the system is
described, as are the protocols that were designedto interface betweenthe
various components of the system.

I will start by giving the architecture overview, and then give details
of each section, and all the protocols, in more depth individually . The
main components are the library which provides the user-level API and the
system daemon, which provides all the communication with the hardware.
The protocolsusedbetweenthe cards and the card readersand the daemon
are given in the speci¯cation documents listed in Section 2.3, but I will
elaborate further below. There is alsoa protocol neededbetweenthe library
and the daemon,and that is a custom protocol designedfor this project.

3.1 Arc hitecture

As I mentioned in Section2.2, I wanted to provide a systemwhich could pro-
vide a securelayer of separationbetweenseveral applications using di®erent
cards. This would have to apply even if the applications were running as
di®erent usersand the cards were in di®erent slots of the samecard reader,
or the sameslot at di®erent times. This suggestedthe use of a two level
system, comprised of a privileged part, which would have direct accessto
the devicesand would mediate application access,and an unprivileged part
which would be part of the applications. The interactions between these
can be seenin Figure 3.1. This ¯gure illustrates the caseof one applica-
tion (marked in red) accessingtwo smart-cards, and the other application
accessinga card in a sharedreader.

11

12 CHAPTER 3. IMPLEMENT ATION

Figure 3.1: Architecture Overview Diagram

3.2. LIBRAR Y 13

3.1.1 Securit y Implications

This project handlesthe communications betweenthe applications and the
smart-card, and is not trying to dictate their security policy or model. Also,
the smart-cards themselves have a security policy which they enforce re-
garding accessto secrets. Both the application and the smart-card assume
that once they start communicating and have sent authentication tokens
to the other, the channel is restricted to them. This is the only security
policy which I am trying to enforce with this project. Therefore, security
credentials merely needto be maintained over the courseof the session,and
a sessionmust be completely separate from any other on the same card.
How this is done can be seenin Section 3.3.2.

3.2 Library

As the functionalit y of the project is de¯ned by the library API that is
presented to programmers, it was natural to start by specifying this, and
then building a system which would be able to support it.

The speci¯cations of the system are to provide a simple interface to the
programmer to accessall of the featuresthat the card providesin the APDU 1

and TPDU interfaces. Due to time constraints I decided to start with just
the APDU functionalit y, but designedthe system such that TPDUs could
be easily added.

APDUs are easily classi¯ed into several sections, such as Binary- or
Record-basedaccessesof ¯les on the card. In an object-oriented language
such as Java or C++ I might have implemented this using objects for each
type of APDU, and overloading the various methods to handle each one
di®erently . Since I was restricted to using the most common programming
language for the target operating systems(C) which lacks such high-level
concepts,I could not do so. I originally planned to have a genericmethod
which would take a parameter to govern which APDU call would be made.
Unfortunately there is such a largediversity in parametersneededfor APDU
calls, that this would not work. Another possibility would be to passin a
structure containing all the parameters, which could vary for each type of
APDU. I discardedthis as being too complex and unwieldy to be usedreg-
ularly in programs. Therefore, I decidedto useindividual methods for each
APDU call, with appropriate naming conventions to disambiguate between
APDU and future protocols.

1SeeSection 2.3.3

14 CHAPTER 3. IMPLEMENT ATION

3.2.1 Example APDU Metho ds

The APDU protocol provides several calls for updating ¯les via a
binary interface. These are APDUREADBINARY, APDUWRITEBINARY,
APDUUPDATEBINARYand APDUERASEBINARY. Each of these corresponds
to a method call of the samename.

APDUs are implemented as a message/response system between the
computer and the card, but I wanted to hide this from the applications
as much as possible. Therefore, each method also has the return values
expected from the card in the method signature, so the application pro-
grammer only needsto make one library call do request the data.

The interfacesprovided can be seenin the library header¯le, an excerpt
of which is given in Figure 3.2

int apdu_read_binary(card_ref ref,
int offset, int length,
char* returneddata, int* returnedlength);

int apdu_write_binary(card_ref ref,
int offset, int length,
char* data);

int apdu_update_binary(card_ref ref,
int offset, int length,
char* data);

int apdu_erase_binary(card_ref ref,
int offset, int length);

Figure 3.2: Example Library Interfaces

3.2.2 Implemen tation of Library Functions

The library functions are merely wrappers to send requeststo the daemon
processwhich actually relays them to the card. They are therefore merely
a serialisation of the parameters into the protocol layer structures (seeSec-
tion 3.4). The function then sendsthe structures to the daemon via the
send ccid request() method in the protocol layer, and is returned the
response from the card after the daemon has performed the query. The

3.3. DAEMON 15

function then copiesthe data from the responseto the parametersasappro-
priate. Thesecan all be seenin Appendix B, Section 162.

3.2.3 Library Do cumen tation

As a library for use by other application programmers, documentation of
the API is essential. This is one of the reasonsI decideto write the project
in CWEB . CWEB intro ducesthe idea that documentation should be written
simultaneously with code, and henceall the documentation of the interfaces
is included in the CWEB output. 2 Figure 3.3 shows a pageof CWEB output,
along with the sourcewhich generatesit in Figure 3.4.

I will also convert the relevant sectionsof the documentation into UNIX

manManual pagesfor easeof accessto the API and function lists.

3.2.4 Selecting a Card

Figure 3.3 also shows the documentation for how to select which card the
application wants to communicate with. The computer which the applica-
tion is connectingto may have several smart-card readers(or a singlereader
with multiple slots). Sincemy project was speci¯cally written to cope with
this situation, there needsto be someway of selectingcards to be used.

This is accomplishedvia two mechanisms. Firstly connectionto the next
available card can be requested,which may block until one is available or
may return immediately with a failure if none is availabl.. Secondly, ¯lter
can be speci¯ed to be applied to a speci¯c APDU ¯le (seeSection 2.3.3) to
selecta card which hasthat feature. This is the samemechanism mentioned
for con¯guration ¯les in Section 4.5.1.

Exactly how this works is given in the documentation for the
get card reference() function which can be seenin Appendix B, Section
88. For convenienceI have reproduced this below.

3.3 Daemon

This is the section of the driver which handles direct communication with
the USB devices,and controls accessfrom the client applications. There are
two main parts to this. Firstly there is a lot of generaloverheadof writing
a UNIX resident processand doing socket IO to the clients. The second
main section was serialisation of commandsfor the USB communication. I

2Seemore in App endix B, and the full documentation, details of which are given in
the appendix.

16 CHAPTER 3. IMPLEMENT ATION

102. Function apdu read records(). This will read records from an EF. If ef
is set to CURRENT EF then recordswill be read from the currently selectedEF.
Otherwise they will be read from the speci¯ed EF. The record to start reading from
are speci¯ed by type and record. If type 2 f FIRST ,LAST ,NEXT ,PREVIOUSg then
the appropriate record will be read from. If type ´ SPECI F Y , then the record
number will be read from record. length bytes of data are read from the starting
record.

You must malloc(2) length bytes of returneddata. If no data is returned, then
returnedlength will be 0.

The return value from this function will be the APDU status that the card
returns.

in t apdu read records (card ref ref, in t ef, RECORDTYPEtype, in t record,
in t length, in t *r eturnedlength, char *r eturneddata);

88. Function get card reference(). This function allows you to request a con-
nection to a smart-card. You can specify the card to request in several di®erent
ways, someof which are blocking, and someare non-blocking.

Blo cking requests:
A request for the next available smart-card can be made. This request will block
until either a smart-card is inserted, or one in use by a di®erent card is made
available.

Non-Blo cking requests:
A request can also be made which will return a card if there is one available, but
will return immediately with a NOTAVAILmessageif there are no free cards.

Specifying cards
Smart-cards can be speci¯ed more precisely by giving a pattern to match against
the contents of the card. If a ¯le and contents are speci¯ed, then any candidate
card to be returned will be checked to seeif that ¯le exists, and if the contents
match the string given in the secondparameter. If ¯le ´ ¤, then no checks will be
performed. Otherwise, if content ´ ¤ then the ¯le will be checked for existence,
but not for content.

Possible Requests
Request Blo cking Description
BLOCKNEXTAVAIL yes Blocks until a card is available and

returns a descriptor.
AVAIL no Returns the error NOTAVAIL if a card isn't

available. This will not block
The method has the signature:
in t get card reference(card ref* ref, CARDREQUESTrequest, char * ¯le, char * con-
tent);

Figure 3.3: Example Output from CWEB

3.3. DAEMON 17

@* Function |apdu_read_records()|.
This will read records from an EF. If |ef| is set to |CURRENT_EF|then
records will be read from the currently selected EF. Otherwise they will
be read from the specified EF. The record to start reading from are
specified by |type| and |record|.
If |type| $\in \{$|FIRST|,|LAST|,|NEXT|,|PREVIOUS|$\}$
then the appropriate record will be read from. If |type == SPECIFY|, then
the record number will be read from |record|. |length| bytes of data are
read from the starting record.

{\bf You must |malloc(2)| |length| bytes of |returneddata|}.
If no data is returned, then |returnedlength| will be |0|.

The return value from this function will be the APDUstatus that the
card returns.
@<Exported Library Functions@>=
int apdu_read_records(card_ref ref, int ef, RECORD_TYPEtype,

int record, int length, int* returnedlength, char* returndata);

@* Function |get_card_reference()|.

This function allows you to request a connection to a smart-card.
You can specify the card to request in several different ways, some
of which are blocking, and some are non-blocking.

{\bf Blocking requests:}

...

{\bf Possible Requests}

\halign{\hfil \it # & # & # \hfil \cr
\bf Request & \bf Blocking & \bf Description \cr
|BLOCK_NEXT_AVAIL|& yes & Blocks until a card is available

and returns a descriptor. \cr
|AVAIL| & no & Returns the error |NOT_AVAIL| if a card isn't

available. This will not block \cr
}

Figure 3.4: CWEB SourceCode for Figure 3.3

18 CHAPTER 3. IMPLEMENT ATION

decided that for manageability this should be split into a separate ¯le of
sourcecode.

3.3.1 UNIX Pro cess Managemen t

A daemonprocessin UNIX such as I neededheremust detach itself from the
consoleand run in the background while other tasks are performed. This is
performed by doing a fork() to createa separateprocess,and then causing
the parent processte exit, while leaving the child running. The code for this
is given in Appendix B Section 34, with detailed documentation.

Having left the console,there is no longer an error stream to print out-
put to. For logging I decided to use the system logger which collects logs
from most of the daemonson the system. This was accomplishedusing the
syslogC library , and my wrappers for con¯guring the syslogoutput are in
Appendix B Section 136.

Finally, if there is no consolewe do not have a convenient way to send
signalsor control messagesto the process.Also mentioned in Section 3.3.2,
you can usea secondcopy of the daemonto communicate with the ¯rst one.
If there is already an instance running, then there is a secondsocket open
which can causethe existing copy to perform actions such as re-scanning
the USB bus, or exiting the program.

3.3.2 Socket Comm unication

There are two ways to implement socket communication in C. One is by
usinga separatethread per opensocket. This is at ¯rst sight a simpleoption,
however, this brings the complexity of then managingconcurrent accessesto
resourcesand implementing somesort of locking to control this. Therefore,
I decidedto usea single threaded designwhich avoids theseproblems, and
is also theoretically more e±cient. This is done using the select() call in
C. This alsoallows the useof blocking asynchronous IO, rather than polling
all the sockets for data. Select takesa list of all the currently open sockets,
and returns a list of those which have data waiting and need to be read
from. Most of the time in the program it is therefore spent in a single loop,
blocked in the select call. Becausethe code is blocked on IO, rather than
sitting in a tight loop and polling, the Operating Systemscheduler doesnot
need to continually allocate it time while it is waiting for data, which is a
lot more e±cient. This can be seenin Appendix B Section 20.

There are several sockets in use,of several types. Firstly , there are two
named sockets. Theseare implemented as ¯les with special properties, and
allow anyone to communicate with the processbound to that socket. The

3.3. DAEMON 19

main socket which client applications write to is world writable, so that any
application can connect to it and present credentials to try and get access
to a card. The secondone is a control channel by which the super-usercan
send messagesto the running application. This is designedto be used by
systemsuch as hotplug[4] to notify the systemwhen new USB deviceshave
beenadded.

When applications request a connection on the named socket, they are
allocateda connection-speci¯c anonymoussocket which only they canaccess.
This corresponds to a single sessionwith a single smart-card. Applications
wanting to accessmore than onecard can open multiple connections. These
sockets are all then added to the list which is passedto select() . When
noti¯ed of data on a socket, the daemonservicesthe request for that card,
and returns the result over the socket to the client.

Socket Securit y

Socket communication in implemented in Linux by writing to an area of
memory which the processwas given accessto by the Operating System
when it openedthe socket. Any Operating System which has memory pro-
tection can therefore ensure that a socket cannot be written to except by
that process,since other applications cannot accessits addressspace. If
this is assumedto be the case, then once a socket has been opened to a
particular application it is guaranteed to be the sameapplication which is
writing to that socket. Therefore, possessionof a socket ¯le descriptor can
be used as an authentication token. This relies on the assumptions that
the program itself won't give accessto that memory location { but if the
application is subverted in that way then it can perform malicious accesses
itself, and such protection is outside the scope of this project { and the Op-
erating System security. The Operating System (particularly in the caseof
Linux, but alsoin general)enforcesthe security of sockets using the memory
protection mechanisms. It can be seeneasily that if a malicious processcan
break the memory protection system, then they can accessthe USB device
directly, or the memory of the client application, and doesnot needto attack
the open socket. Therefore, replying on sockets as authentication tokens is
acceptable.

3.3.3 Managing USB devices

When the daemoninitially starts it doesa scanof the USB bus to ¯nd any
devicesthat are currently attached. This scancan be re-run at any time via
messagessent over the control socket, and such a messagewould be sent by

20 CHAPTER 3. IMPLEMENT ATION

a system like hotplug if it discovered a CCID device being attached. The
scanpreservesany existing devicesand is therefore safeto run at any point.
The latest development version of LibUSB allows you to scan all the USB
bussesfor devicesmatching a particular pattern in their USB class,type and
vendor IDs. I scan for devicesmatching the USB CCID Class ID (0x0B),
which is de¯ned in the CCID Class-spec[7].

Once a card reader has been detected an entry is put into the list of
devices for each card slot the reader has. From that point on, each slot
is treated as a separate device, and the slots can be `owned' by di®erent
programssimultaneously. All the slotsare then checked to seeif they contain
a smart-card, and if soaddedto the list of devicesaccessibleby applications.

3.3.4 USB Proto cols

Once the request for a command get to the daemon processthen it needs
to be encoded to be sent to the smart-card. There are two layers to this,
First an APDU Messageblock must be built up. This is de¯ned in the ISO
7816[2]standard and described in the next section Then this block has to
be embeddedin a CCID command messageblock, as described below. The
CCID protocol is the USB wire protocol, which sendsa command to the
card reader. The reader then strips o®the CCID layer and sendsthe APDU
command to the card itself. Return messagedfrom the card are encoded in
a similar two-level schemeto be sent back to the daemon.

APDU Proto col

When a request(encodedusing the protocol in Section3.4) hasbeenreceived
by the daemon, it checks the protocol °ag on the data structure. This is
usedto switch which method is called to decode it. For APDU requestsit is
passedto the decode apdu req function, which can be seenin Appendix B,
Section 81.

A valid APDU starts with a headerof 4 bytes. The ¯rst two specify the
command classand speci¯c instruction, and the secondtwo are parameter
bytes. This is optionally followed by an arbitrary length of data attached to
the command (with its length) and the expected length of any reply. This
is illustrated in Figure 3.5.

The decode function takesa structure as read o®the network and con-
verts it into the byte stream to be sent over the USB. To do this, we switch
on the APDU type, and call another block of code. This sets the classand
instruction headerbytes and copiesthe ¯xed-length parametersinto the ap-
propriate parts of the parameter bytes, as speci¯ed in the ISO standard.

3.3. DAEMON 21

Figure 3.5: APDU Command Structure (taken from ISO 7816[2])

Attached data is stored in the samepart of the structure for all protocols,
and can be copied onto the end of the data block in all cases. If the par-
ticular commandexpects data back from the command then it also setsthe
return length byte. This byte stream is then passedto the CCID layer.

When a reply is received from the card it is also encoded as an APDU
block. The reply contains ¯rst an optional, variable length data block of the
length speci¯ed in the commandthat causedthe reply. Secondly, it contains
two mandatory status bytes which indicate the successor otherwise of the
command. The APDU responsestructure which is passedover the network
correspondingly contains a status word, and the generic responsestructure
contains a pointer to a byte stream. Theseare copied from the byte stream
received from the network and the structure is returned to be sent to the
client application.

CCID Proto col

The decoded APDU requestsneed to be wrapped in a CCID block to be
sent to the card reader. This is a USB-level protocol and deals with the
T=0/ T=1distinction. A CCID headercontains the type of CCID command
(PCTORDRT0APDU), the slot in the device to send the command to, and
the length of the APDU command. The resulting byte stream (10 bytes of
CCID header, followed by 4 bytes of APDU header, followed by 4 bytes of
sendand receive length, plus the data to sendwith the command) is written
to the USB deviceusing a bulk out command to LibUSB.

When receiving a reply from the USB device, the CCID header is vali-
dated and then stripp ed o®.

22 CHAPTER 3. IMPLEMENT ATION

3.4 Library-Daemon Proto col

The protocol used for communicating over the sockets between the client
applications and the daemon is in essencea serialisation of the APDU or
other command which is to be sent to the card. This serialisation is imple-
mented by having a set of ¯xed-size parametersstored in a structure, which
is written to the network byte-wise, and an optional arbitrary-length block
of data, the length of which is speci¯ed in the structure. The receiver can
therefore read just the structure, then ¯nd out how many more bytes to
expect on the socket.

This is implemented using a seriesof struct s which have been over-
lapped using the union operator. Unions enablethe speci¯cation of a set of
mutually exclusive options which are stored in the samespace. Depending
on context, the samememory location is accessedas a di®erent type. With
this technique, all the di®erent types of APDU have di®erent numbers of
parameters,but the sametype can be usedwhilst only needingto store the
largest set at useat once.

The full structures can be seenin Appendix B, Section 146, but I have
included a sample in Figure 3.6. In each caseof a union there is a variable
which indicates which member of the union is to be usedto accessthe data
and indicates the typesin use. Everything within the protocol-speci¯c struc-
tures is a ¯xed size, and there is a protocol-agnostic method of appending
extra data.

All the values in the structures are ¯xed length variables, rather than
referencetypes,so that when reading the structure over the network a ¯xed
number of bytes must be read. The exception to this is the pointer to the
variable length data. This is de¯ned at the top level sothat all protocolshave
accessto a variable length data string, but the network code can be the same
for all. When writing to the network you must sendthe structure, followed
by exactly dsize bytes, which are then copied into a memory location at
the other end and assignedto data , or data set to NULLi® dsize == 0.

There is a similar structure for returning data from the card organised
in the sameway, with the only APDU return value being two status bytes
in all cases,and optionally a block of data returned from the card. This is
handled in the sameway as the request structure described above.

3.4. LIBRAR Y-DAEMON PROTOCOL 23

struct ccid_request_struct {
PROTOCOL_TYPEprotocol;
union {

struct apdu_request_struct apdu;
...

};
int dsize;
char* data;

};

struct apdu_request_struct {
int apdu_type;
union {

struct apdu_binary binary;
struct apdu_record record;
...

} ;
};

struct apdu_binary {
MODEmode;
int offset;
int length;

};

Figure 3.6: Structures for Storing APDU Commands

24 CHAPTER 3. IMPLEMENT ATION

Chapter 4

Evaluation

The successof this project is evaluated on several basis. Firstly , the project
set out to provide an interface for all of the servicesprovided by an ISO
7816 Smart-Card. Secondly, the interface presented to programmers using
the library should be as simple and easy to use as possible. Finally, the
implementation should be well written, stable and easy to maintain, and
secure.

4.1 Serviceabilit y

As I stated at the beginning, there wasa lot that I could have implemented in
this project. There are two CCID-card protocols,and three application-level
protocols. All the protocols are alsoextensiblewith proprietary commands.
I started implementing only the T=0 and APDU protocols respectively, but
writing the protocols and programs such that it would be easy to add the
others in later.

There are three areasthat the code must be extensible to support the
rest of the protocols: the library API, the application-daemonprotocol and
the USB interfacing code.

4.1.1 Library API

Since this has been provided simply with individual method calls for each
APDU function, it is trivial to extend in a backwards-compatible way by
adding more functions. The library usesa pre¯x of the protocol on all the
method names. Consequently , you have a separatename-spacefor each pro-
tocol's functions, and new protocols can be added without worrying about
overlapping command names.

25

26 CHAPTER 4. EVALUA TION

4.1.2 Application-Daemon Proto col

The protocol usedto communicate over the sockets betweenthe two sections
of the project obviously needsto be extensible to handle the new protocols.
It has beendesignedwith this in mind. Protocols can be added by putting
another option in the top level union, and adding another constant to in-
dicate the protocol in use. This is not necessarilycompletely backwards-
compatible, if the protocol has a larger block of ¯xed-length data than the
current ones. However, since this protocol is only usedby the library code
and the daemon,which will be distributed together, applications do not use
it and there are no compatibilit y problems.

4.1.3 USB Code

The translation to USB and ISO 7816protocols is done entirely within the
daemon, so there are few, if any, issueswith backwards-compatibilit y. As
far as extensibility is concerned,the USB layer passeseach method through
functions to do the encoding of the commandsinto the appropriate protocols.
Adding support for new protocols is fairly easyas C programs go, however,
would have beeneasierin a languagewith support for classes,for example
Java. In that caseit would simply require overriding a method, and the
calling code doesnot needto know that there is a new protocol in use.

4.1.4 T=0 and APDU

Sincethere wassomuch work involved in this project, the ISO 7816standard
is very large, and to fully implement a singleoneof the protocolswould have
taken more time that I had available for this project. Therefore, I had to
stop implementing all of the APDU protocol, and it does not yet support
all of the commands. However, I have implemented a su±cient subset to
write sometest programs to validate the rest of the project and all of the
methods which haven't been implemented are present as stubs for later
implementation. The USB-level encapsulation is complete for T=0 APDU
commands.

4.2 Simplicit y

As part of this project I wrote a test application to demonstratethat the code
was functioning, and to show the easeof use for application programmers.
The code for this canbe found in Appendix A. The program merely waits for
a Cambridge University ID Card to be inserted, and then readsout the card

4.3. STABILITY 27

number and assorteddetails. The code in the Appendix has been written
along with documentation describing its operation, so I have included just
the sequenceof library calls necessaryin Figure 4.1. As can be seen,this
is a very simple interface, allowing programmersaccessto what they want,
whilst hiding most of the complexity.

char * carddata;
in t length;
. . .
get card reference(& ref, BLOCKNEXTAVAIL, \ FD03",
\ <0-9>f 8g<a-z>f 2g<0-9>f 4g<a-z>0.000 ");
apdu read binary(ref, 0, 20, carddata, &length); releasecard(ref);

Figure 4.1: Example Application Code

4.3 Stabilit y

Sincethis was too large a project to complete in its entiret y, I choseto build
the framework within which all the components sit ¯rst. This meansthat
it is currently not possibleto test all of the available options, which would
be the traditional test regime for this sort of software. Unfortunately, it
has meant that many of the functions have not been fully tested, although
enoughhas been implemented to produce very simple test applications, as
can be seenin Appendix A. Many parts of the driver are very generic,and
don't depend on the protocol data being sent over them and this framework
is complete. The socket communications, and the UNIX systemsprogram-
ming parts have all beentested and are stable.

4.4 Securit y

The security of a complexsystemis never an absolute,but rather an exercise
in risk management. The security goalsweregiven in Chapter 2, and I shall
go over them again here to seehow well the project matches my original
assessment. There are also somesecurity issuesthat I hadn't consideredin
the original planning, but which aroselater.

The main security policy that I wanted to enforcewith the driver, was
that any sessioncommunicating with a smart-card could only have one ap-
plication communicating with it. As I said in Section 3.3.2, the operating
system memory protection enforcesthe fact that onceopened,a socket can

28 CHAPTER 4. EVALUA TION

only be written to by that application. BecauseI am using sockets as au-
thentication tokens, only the application with a socket is allowed to send
commandsto to a particular reader slot while it is bound to an application.
The setup and tear-down operations on sockets also force power up and
power down events on the smart-card, so it is guaranteed to be in the reset
state after communications have ¯nished. If the operating system memory
protection failed, or the application using my library allowed arbitrary com-
mand insertion into the sockets then my security assumptionsare false,but
that is both outside the scope of the project, and would alsoresult in several
other methods of breaking the security.

An issueI hadn't consideredwas restricting accessto certain programs
or users. I was not initially concernedwith which application could use
a card, becausethe smart-cards have their own security mechanism built
in. The main issue was with accessto the card once an application had
authenticated to the card. However, with the system as it is there is a
potential for a denial of service. An application can start communicating
with a card, and stop other applications from doing so. It doesn't needany
special privileges to do this. A secondminor worry is for cards which are
authenticating merely by their presence,and don't contain any secrets.This
can be handled in a lot of casesvia UNIX permissionsand Linux Pluggable
Authentication Modules (PAM).

The UNIX permissionssystem allows the restriction of which userscan
write to the socket. This can be doneeasily if the restriction is on a per-user
level by adding the appropriate usersto a UNIX group, and only allowing this
group to write to the socket. Changing to project to support this would be
a relatively simple matter of adding a con¯guration ¯le option and changing
the line of code which sets the permissions.

If the restriction needsto be per-application then this is a lot more dif-
¯cult. Somesolutions exist, but not in the standard Linux kernel. Projects
such as SELinux and GRSecurity allow more ¯ne-grained accesscontrol.

PluggableAuthentication Modulesfor Linux canperform actions such as
changing the ownership of a sockets when the user logs in, can can perform
di®erent actions if the user is physically at the terminal or is a remote user.
If the model is that only users physically at the computer will be using
smart-cards, and there can be only one such user at a time, then the big
stick security principle1 is completely acceptable.

1 \Who ever has physical control of the device is allowed to take it over" - Frank
Stajano[9]

4.5. ADDITIONAL FEATURES 29

4.5 Additional Features

There are several featureswhich I had planned to include in the project, but
unfortunately did not ¯t within the available timescale.

4.5.1 In terrupt-based events

Most, if not all, of the modern card readershave support for both bulk IO
and interrupt-based communications. One of the features I wanted to o®er
with this project was support for handling insert/remove noti¯cations via
this interrupt mechanism. Currently this hasto be implemented by regularly
polling the status of each slot in the reader. This is not a particularly
elegant way of implementing this, as it meansthe processhas to be using
the processorand the USB bus each time it checks, rather than just blocking
on a read call.

The plan was to have a similar mechanism to the one de¯ned in Section
3.2.4 to allow applications to bind themselves to a particular card or type
of card. This association between the card and the application would be
de¯ned in a con¯guration ¯le for the daemon. When a card is inserted, the
daemonwould check it against the featureslisted for cards in the con¯gura-
tion ¯le and if one matched then the daemonwould launch the appropriate
program to deal with it. A second,similar approach would be to have run-
ning applications be sent asynchronous messageswhen a match for a card
is inserted, and allow them to register that while running.

4.6 Testing

Ideally, full testing would be done by emulating the hardware device and
sending to it all the possible commands, and having it reply with all the
available errors, along with systematically choseninvalid responses.This is
the most robust method of testing a device driver, but requires the most
e®ort. Essentially a secondimplementation of the standard must be made
to do the emulation.

Given the timescaleand that a completeimplementation of even a single
protocol was not feasible, so testing all of the commands at the current
status of the project is also not possible. Appendix A contains a sample
application which reads from a Cambridge University ID Card and prints
the result. This can be used to demonstrate multiple client applications
talking to the daemonover the sockets, and the commandsbeing translated
to the device.

30 CHAPTER 4. EVALUA TION

4.7 Summary

The project has not, unfortunately, yet met all of the goalslisted in Section
2.2. Those that are missing, however, are just further instancesof things
which have already been completed. Enough of the project is working to
validate the architecture and to demonstrate that the systemworks in prin-
ciple. All of the major elements have examples in place and the result is
de¯nitely simpler and easierto usethan the current alternativ es. Given the
timescaleto which I wasworking it wasnot expectedto have a fully working
product, but I have produced enoughto seethat one would be viable.

Chapter 5

Conclusions

The aim of this project was to provide an application-level interface to
CCID[7] basedsmart-card readersand ISO 7816[6] compliant smart-cards
which was simpler and easier to use than the current drivers for doing so.
As set out in the Intro duction chapter there is a needfor such an interface.

5.1 Ac hiev ements

A two-part driver system for talking to ISO 7816[6] smart-cards was de-
signedand implemented. This is comprisedof a constantly-resident daemon
processwhich is responsible for communicating directly with the smart-card
readersand cards, and a sharedlibrary for application programmersto link
to which exports all the APDU commandsto the application. Applications
communicate with the daemonover UNIX sockets.

To demonstratethis I havewritten an application to readthe information
from the Cambridge University ID card. The simplicit y of this application
shows how easyit is to program using this driver.

5.2 Future Work

The common theme throughout the Evaluation chapter is that the project
wasconsiderablylarger than either I or my supervisor had anticipated. The
amount of work involved in creating a functioning driver was a lot greater
than the time I had available. Were I to plan this same project again, I
would have started o®getting a solid USB CCID and APDU layer working
before starting on the Application Interface. However, merely creating a
driver was not the main aim of the project, it was to create a good, easy
and feature-full interface for other programmers. Given the sametime, it

31

32 CHAPTER 5. CONCLUSIONS

would have been put to better use building on top of an existing interface
to the hardware to create a good programming library .

Bibliograph y

[1] Ccid smart-card library . http://www.matthew.ath.cx/publications/.

[2] ISO Standard 7816 Section 4.

[3] libusb project. http://libusb.sourceforge.net/.

[4] Linux hotplugging. http://lin ux-hotplug.sourceforge.net/.

[5] The universal serial bus. http://www.usb.org/.

[6] ISO Standard 7816 / BSI Standard 27 816. BSI, 389 Chiswick High
Road, London, W4 4AL, UK, 1987/ 1991.

[7] Universal Serial Bus Device Class Speci¯c ation for USB Chip/Smart
Card Interface Devices, ¯rst edition, March 2001. http://www.usb.org/.

[8] Donald E. Knuth and Silvio Levy. The CWEB System of Structured
Documentation. Addison-Wesley, 3.6 edition, 1993.

[9] Frank Stajano. Security For Ubiquitous Computing. John Wiley & Sons
Ltd, Chichester, West Sussex,2002.

33

34 BIBLIOGRAPHY

APPEND A CWEBOUTPUT 35

App endix A

Test Application Code Listing.

Appendix A contains the code for a test application using the project to accessthe smart card. It will
read the card data from a Cambridge University ID Card.

1. Header ¯le includes.

hInclude our own header¯les 2 i
hInclude the CCID Card library 3 i

2. Our own header ¯le for this program. This givesus debug output conditional on the DEBUG prepro-
cessorvariable and the assertstatement to check valuesare correct.

hInclude our own header¯les 2 i ´
include "../share/debug.h"
include "../share/log.h"
This code is used in section 1.

3. The CCID Library headers.This allows us to talk to the cards via a daemonwhich is managing access

hInclude the CCID Card library 3 i ´
include "../lib/library.h"
This code is used in section 1.

4. The main part of the program.

in t main (in t argc; char ¤¤argv)
f

hTester local variables 6 i
hConnect to the daemonand request a referenceto a card 5 i ;
hSenda command to the card 7 i ;
hExit the program 9 i ;

g

5. Connecting to the card. We make a library call to setup the connection to the daemon and request
accessto a card. It returns us a referenceto the card we can useto sendcommandsto it.

To seeif this is a university card we check for the existenceof ¯le \FD03" and its contents

hConnect to the daemonand request a referenceto a card 5 i ´
debug("Getting Ãcard Ãreference\n");
assert(get card reference(& ref ; BLOCK_NEXT_AVAIL; "FD03";

"<0-9>{8}<a-z>{2}<0-9>{4}<a-z>0.000") ¸ 0; "Could Ãnot Ãconnect");
This code is used in section 4.

6.

hTester local variables 6 i ´
card ref ref ; =¤ a referenceto the card we are accessing¤=

Seealso section 8.

This code is used in section 4.

36 CWEBOUTPUT APPEND A x7

7. Sendinga command. Read the card ID from the card.

hSenda command to the card 7 i ´
debug("Sending Ãcommand\n");
apdu read binary (ref ; 0; 20; carddata; &length);
carddata[length] = '\0' ; =¤ make sure it is null terminated ¤=
printf ("TheÃCardÃID: Ã%s"; carddata); =¤ print it out. Its mostly ascii ¤=

This code is used in section 4.

8.

hTester local variables 6 i + ´
char ¤carddata = malloc(21);
in t length;

9. Exitting the program. After connecting and sendinga command, we exit the program.

hExit the program 9 i ´
releasecard(ref);
free(carddata);
debug("Exitting");
return 0;

This code is used in section 4.

APPENDB CWEBOUTPUT 37

App endix B

Project Code Examples.

Appendix B contains excerpts of code from the project. Theseexcerpts are individual sectionswhich are
referred to in the body of the report, and have been taken from the document produced using Knuth and
Levy's CWEBsystem of structured documentation to apply markup in TEX.

The complete listing of sourcefor the project is included on the attached CD, or can be downloaded from
http://www.matthew.ath.cx/public ations/ .

38 PROCEDURE LISTEN SOCKETS () APPENDB x20

20. Pro cedure listen sockets(). Loop, running select (2) over the sockets and handling the results from
them.

void listen sockets()
f

hlisten sockets Local variables 22 i ;
for (; ;) f =¤ Loop forever here unlesstold to exit by a control message¤=

hAdd all the active sockets to an fd set 23 i ;
timeout :tv sec = 1;
timeout :tv usec = 0;
assert((rc = select (scount ; &socks; ¤ ; ¤ ; &timeout)) ¸ 0; "Select ÃError");

=¤ check for things to read ¤=
debug("Connections ÃonÃ%dÃsockets." ; rc);
debug("checking ÃusbÃdevices Ãfor Ãinterrupts");
check usb interrupts ();
if (0 ´ rc) contin ue; =¤ nothing to read ¤=
f =¤ read from the remaining sockets. ¤=

if (FD_ISSET(master socket; &socks)) =¤ the master socket ¤=
f

hAccept a new connection 24 i ;
g
if (FD_ISSET(control socket; &socks)) =¤ the control socket ¤=
f

if (handle control message()) return ; =¤ handle control messageand exit if told to ¤=
g
current = client root ;
while (¤ 6= current) =¤ the client sockets ¤=
f

if (FD_ISSET(current~socket; &socks)) f
if (: service client (current)) f =¤ connection should be closed ¤=

slog("Client Ãconnection Ã(pid: Ã%d)Ãclosed" ; current~pid);
close(current~socket); =¤ closethe connection ¤=
client root = removeclient (client root ; current); =¤ remove the client from the list ¤=
free(current);
current = ¤;

g
else current = current~next; =¤ go onto the next client ¤=

g
else current = current~next; =¤ go onto the next client ¤=

g
g

g
g

x34 APPENDB FORK FROM CONSOLE 39

34. Fork from console. We have to fork (2) a child proccessand the exit the parent to return to the
console,then setsid(2) to disassociate ourselves from the tt y we were spawned on. Finally, we chdir (2) to
the root directory so that ¯lesystems can be unmounted.

hFork from console34 i ´
debug("Leaving Ãconsole....");
pid = fork ();
assert(pid ¸ 0; "Error Ãin Ãfork");
if (0 < pid) exit (0);
setsid();
chdir ("/");
umask(0);

This code is used in section 32.

40 FUNCTION DECODE APDU REQ () APPENDB x81

81. Function decode apdu req(). Turns a ccid request structure into void ¤ bu®erfor writing to a USB
device. The function returns false if an error occurred.

NOTE: may malloc(2) bu®er. If the function returns true you MUST use free(2) to deallocate it when
you are ¯nished.
bu®er A pointer to a void ¤ bu®er

req The structure to decode to the bu®er

hUSB Internal Functions 68 i + ´
bool decode apdu req(ccid request¤ req; void ¤¤bu®er)
f

char header[4]; =¤ [0] = CLA, [1] = INS, [2] = P1, [3] = P2 ¤=

header[0] = # 00;
header[1] = # 00;
switc h (req~apdu:apdu type) f
case APDU_AUTHENTICATE: hAPDU authenticate decode 0 i ;
case APDU_BINARY: hAPDU binary decode 82 i ;
case APDU_CHALLENGE: hAPDU challengedecode 0 i ;
case APDU_CHANNEL: hAPDU channel decode 0 i ;
case APDU_DATA: hAPDU data decode 0 i ;
case APDU_RECORD: hAPDU record decode 0 i ;
case APDU_SELECT: hAPDU selectdecode 0 i ;
case APDU_VERIFY: hAPDU verify decode 0 i ;
default : return false;
g
return true ;

g

x82 APPENDB FUNCTION DECODE APDU REQ () 41

82. Decoding an APDU Binary command.

hAPDU binary decode 82 i ´
switc h (req~apdu:binary :mode) f
case READ:

if (0 ´ header[1]) header[1] = # B0; =¤ set the INS to READ BINAR Y ¤=
case ERASE:

if (0 ´ header[1]) header[1] = # 0E; =¤ set the INS to ERASE BINAR Y ¤=
¤bu®er = malloc(3 + 4); =¤ payload + headersize ¤=
((char ¤) ¤bu®er)[6] = (req~apdu:binary :length & # FF);
((char ¤) ¤bu®er)[5] = ((req~apdu:binary :length & # FF00) À 4);
((char ¤) ¤bu®er)[4] = 0; =¤ Lc = null, Data = null, Le = req~apdu:binary :length ¤=

=¤ bu®er[0]= 0 => extended format Le ¤=
break ;

case WRITE:
if (0 ´ header[1]) header[1] = # D0; =¤ set the INS to WRITE BINAR Y ¤=

case UPDATE:
if (0 ´ header[1]) header[1] = # D6; =¤ set the INS to UPDATE BINAR Y ¤=
¤bu®er = malloc((req~dsize& # FFFF) + 3 + 4); =¤ payload + payloadsize+ header ¤=
((char ¤) ¤bu®er)[6] = (req~dsize& # FF);
((char ¤) ¤bu®er)[5] = ((req~dsize& # FF00) À 4);
((char ¤) ¤bu®er)[4] = 0; =¤ Lc = req~dsize, Data = req~data, Le = null ¤=

=¤ bu®er[0] = 0) extended format Lc ¤=

void ¤b = ¤bu®er+ 7; =¤ WTF?! ¤=

memcpy(b;¤bu®er; req~dsize);
break ;

case APPEND: default : return false;
g
header[3] = (req~apdu:binary :o®set& # FF);
header[2] = ((req~apdu:binary :o®set& # 7F00) À 4);
memcpy(¤bu®er; header; 4);
break ;

This code is used in section 81.

42 FUNCTION GET CARD REFERENCE () APPENDB x88

88. Function get card reference().
This function allows you to request a connection to a smart card. You can specify the card to request in

several di®erent ways, someof which are blocking, and someare non-blocking.
Blocking requests:
You can make a request for the next available smart card. This request will block until either a smart

card is inserted, or one in useby a di®erent card is made available.
Non-Blocking requests:
You can make a requestwhich will return a card if there is oneavailable, but will return immediately with

a NOT_AVAILmessageif there are no free cards.
Specfiying cards
Smart cards can be speci¯ed more precisely by giving a pattern to match describing them. If you specify

a ¯le and contents, then any candidate card to be returned will be checked to seeif that ¯le exists, and if
the contents match the string given in the secondparameter. If ¯le ´ ¤, then no checks will be performed.
Otherwise, if content ´ ¤ then the ¯le will be checked for existance,but not for content.

Possible Requests
Request Blocking Description

BLOCK_NEXT_AVAILyes Blocks until a card is available and returns a descriptor.
AVAIL no Returns the error NOT_AVAILif a card isn't available. This will not block

hExported Library Functions 88 i ´
int get card reference(card ref ¤ ref ; CARD_REQUESTrequest; char ¤¯le ; char ¤content);

Seealso sections 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 119, 121, 123, 125, 127, and 129.

This code is used in section 85.

89. CARD_REQUESTType de¯nition. This type selectswhat type of request to make.

hLibrary Type De¯nitions 89 i ´
typedef enum f

AVAIL; BLOCK_NEXT_AVAIL
g CARD REQUEST;

Seealso section 90.

This code is used in section 85.

90. Card references.A card referencecontains the information about how to connect to one smart card.
A card referencemust be retrieved from a get card reference() call, and should be relinquished with a
releasecard() call when ¯nished with.

Sincesockets are being usedto identify cards in the cardd, this is merely a socket identi¯er and info block.

hLibrary Type De¯nitions 89 i + ´
struct card ref struct f

struct sockinfo struct f
sa family t family ;

char sockpath[MAXSOCKETPATH];
g info ;
int socket;

g;
typedef struct card ref struct card ref ;

x91 APPENDB FUNCTION GET CARD REFERENCE () 43

91. Implementation of function.

in t get card reference(card ref ¤ref ; CARD REQUEST request; char ¤¯le ; char ¤content)
f

socklen t len;
pid t pid ;

in t rc;

debug("socket: Ã%d"; ref~socket);
ref~socket = socket(AF_UNIX; SOCK_STREAM; 0);
debug("getting Ãsocket, Ãerrno: Ã(%d)Ã%s"; errno ; strerror (errno));
assert(ref~socket > 0; "Can't Ãget Ãsocket Ãfd");
debug("socket: Ã%d"; ref~socket);
ref~info :family = AF_UNIX;
strcpy(ref~info :sockpath; SOCKETDIR);
strcat (ref~info :sockpath; "/master");
debug("master Ãsocket: Ã%d,Ã%s"; ref~socket; ref~info :sockpath);
len = sizeof (ref~info :family) + strlen(ref~info :sockpath) + 1; =¤ connect ¤=
debug("connecting Ãto Ãdaemon");
if ((rc = connect (ref~socket; (struct sockaddr ¤) &(ref~info); len)) < 0) return rc;

=¤ sendour pid ¤=
pid = getpid();
debug("sending Ãpid Ã(%d)" ; pid);
if ((rc = send(ref~socket; &pid ; sizeof (pid t); 0)) < 0) return rc;
return 0;

g

44 LOGGING FUNCTIONS APPENDB §136

136. Logging functions.
This ¯le contains functions for sending log messagesto syslog,and to perform conditional logging.

137. Header ¯les and global variables. We needsyslogheader ¯les, and also debuggingcode. We store a
static global variable which governs whether to usesyslogor to print messageson stderr .

include <syslog.h>
include <stdarg.h>
include <errno.h>
include "log.h"
include "debug.h"

bool do syslog = false;

138. Exported interfaces. The ¯le log.h exports several macrosand functions to other ¯les.

〈 log.h 138〉 ≡
ifndef __CCID_LOG_H
de¯ne __CCID_LOG_H
include "types.h"
ifdef DEBUG
de¯ne assert(a;b) do
{

bool __T = a;

fprintf (stderr ; "[Assert] Ã%s\n"; __T ? "true" : "false");
if (¬__T) real assert(b);
}
while (0)

else
de¯ne assert(a;b) if (¬(a)) real assert(b)
endif

void real assert(char ∗message);
void slog(char ∗fmt ; : : :);
void setup syslog(bool log);

endif

139. Procedurereal assert().

void real assert(char ∗message)
{

if (0 6= errno) {
char ∗errstr = strerror (errno);

slog("[Assert] Ãfailed Ãwith Ãerrno Ã%d/%s:Ã%s\n"; errno ; errstr ; message);
}
else slog("[Assert] Ãfailed: Ã%s\n"; message);

ifdef DEBUG
exit (1);

endif
}

x140 APPENDB LOGGING FUNCTIONS 45

140. Procedureslog ().

void slog (char ¤fmt ; : : :)
f

va list args ;

va start (args ; fmt);
if (do syslog) vsyslog (LOG_NOTICE; fmt ; args);
else f

fprintf (stderr ; "[ccid-cardd] Ã");
vfprintf (stderr ; fmt ; args);
fprintf (stderr ; "\n");

g
va end (args);

g

141. Proceduresetup syslog ().

void setup syslog (bool log)
f

do syslog = log ;
if (log) openlog ("ccid-cardd" ; 0; LOG_DAEMON);

g

46 CCID STRUCTURES APPENDB x146

146. CCID structures. These structures are a generic wrapper which may contain one of several
protocols.

hDe¯nitions of CCID structures 146 i ´
struct ccid request struct f

PR OTOCOL TYPE protocol ;
union f

struct apdu requeststruct apdu;
g;
in t dsize;
char ¤data;

g;
struct ccid resp onse struct f

PR OTOCOL TYPE protocol ;
union f

struct apdu response struct apdu;
g;
in t rsize;
char ¤rdata;

g;
t yp edef struct ccid request struct ccid request ;
t yp edef struct ccid resp onse struct ccid resp onse;

This code is used in section 144.

147. APDU BINAR Y structure. EncodesAPDU BINAR Y commands

hDe¯nitions of APDU structures 147 i ´
struct apdu binary f

MODE mode;
in t o®set;
in t length;

g;
Seealso sections 148, 149, 150, 151, 152, 153, 154, 155, and 156.

This code is used in section 144.

148. APDU RECORD structure. EncodesAPDU RECORD commands

hDe¯nitions of APDU structures 147 i + ´
struct apdu record f

MODE mode;
in t ef ;

RECORD_TYPEtype;

in t record;
in t length;

g;

x149 APPENDB CCID STRUCTURES 47

149. APDU DATA structure. EncodesAPDU DATA commands

hDe¯nitions of APDU structures 147 i + ´
struct apdu data f

MODE mode;

TAG_TYPEtagtype;

in t tag;
in t length;

g;

150. APDU SELECT structure. EncodesAPDU SELECT commands

hDe¯nitions of APDU structures 147 i + ´
struct apdu select f

SELECT MODE mode;
in t rtemplate;
in t rsize;
union f

struct f
FILE_TYPEtype;

in t DF;
g;
struct f

bool relative;
g;

g;
g;

151. APDU VERIFY structure. EncodesAPDU VERIFY commands

hDe¯nitions of APDU structures 147 i + ´
struct apdu verify f

bool global ;
in t reference;

g;

152. APDU AUTHENTICA TE structure. EncodesAPDU AUTHENTICA TE commands

hDe¯nitions of APDU structures 147 i + ´
struct apdu authen ticate f

bool internal ;
bool globalsecret ;
in t algorithmid ;
in t secretid ;
in t responselength;

g;

153. APDU CHALLENGE structure. EncodesAPDU CHALLENGE commands

hDe¯nitions of APDU structures 147 i + ´
struct apdu challenge f

in t maxlength;
g;

48 CCID STRUCTURES APPENDB x154

154. APDU CHANNEL structure. EncodesAPDU CHANNEL commands

hDe¯nitions of APDU structures 147 i + ´
struct apdu channel f

bool open;
in t channelno;

g;

155. APDU REQUEST structure. This is a union of the various APDU structures for the di®erent
commands. the apdu type ¯eld de¯nes which member of the union should be accessed.

hDe¯nitions of APDU structures 147 i + ´
struct apdu request struct f

in t apdu type;
union f

struct apdu binary binary ;
struct apdu record record;
struct apdu data data;
struct apdu select select ;
struct apdu verify verify ;
struct apdu authen ticate auth;
struct apdu challenge challenge;
struct apdu channel channel;

g;
g;

156. APDU RESPONSE structure. This encodesresponsesto an APDU command.

hDe¯nitions of APDU structures 147 i + ´
struct apdu resp onse struct f

APDU TYPE apdu type;
in t status;

g;

157. Functions which sendand/or receive CCID structures.

hDeclarations of CCID functions 157 i ´
in t send ccid request(in t skt; ccid request req; ccid resp onse ¤res);
in t get ccid request(in t skt; ccid request ¤req);
in t send ccid response(in t skt; ccid resp onse res);

This code is used in section 144.

x162 APPENDB FUNCTION SEND CCID REQUEST () 49

162. Function send ccid request (). This may malloc (2) req~rdata . If the return value is 0 and
req~rdata 6= ¤ then you must free (2).

in t get ccid request (in t skt ; ccid request ¤req)
f

in t ret = 0;

debug ("get Ãstructure");
if ((ret = recv bytes (skt ; (void ¤) req ; sizeof (ccid request))) < 0) return ret ;

=¤ get structure ¤=
print ccid request (req);
ret = 0;
debug ("get Ãdata Ã(size: Ã%d)"; req~dsize); =¤ get data ¤=
if (0 ´ req~dsize) f

req~data = ¤;
return 0;

g
else f

req~data = malloc (req~dsize);
if ((ret = recv bytes (skt ; req~data ; req~dsize)) < 0) f

debug ("Freeing...");
free (req~data);
req~data = ¤;
return ret ;

g
debug ("GotÃdata");

g
return 0;

g

50 FUNCTION SEND CCID REQUEST () APPENDB x162

Part I I PersonalProject Proposal

CCID Smart-card library

Matthew Johnson
Trinit y Hall

mjj29@cam.ac.uk

May 6, 2004

Pro ject Originator: Dr. M. Kuhn

Pro ject Supervisor: S. J. Murdoch

Signature:

Director of Studies: Dr. S. Moore

Signature:

Pro ject Overseers: Dr. J. Bacon and Dr. J. Daugman

1

Project Proposal

Background

The idea (kindly suggestedby Dr Kuhn) is to develop a driver systemfor GNU/Lin ux
for accessingUSB-basedsmart-cardsand readers,which can handlemultiple devicesand
cardsand multiple registeredapplications using thosecards.

The cards are ISO-7816smart-cards,a subsetof which are used in both University
cards and EMV 1-compliant credit cards, the readersare genericCCID2-compliant USB
smart-card readers.

The current situation with Linux smart-cardsupport is a seriesof disjoint driversfrom
the Musclecardproject, mainly designedfor serial or parallel connecteddevices. They
alsodo not support having multiple smart-cardstalking to multiple separateapplications.
It is to be expected that with the CCID standard (previous smart-cards used mostly
custom protocols) and the easeof use of USB, thesedeviceswill rapidly dominate the
marketplace.

There are several parallels betweensmart-cardsand USB devices,particularly with
how they are managedon insertion. There is a program for Linux called hotplug, which
managesUSB devices. This has a daemonwhich runs in the background, and receives
noti¯cation from the kernel about USB events, such and insertion of a new device. Hot-
plug getsfrom the devicea USB class,a vendorID and a product ID. The daemonchecks
a databaseof those ID strings, and adds the appropriate modules to the kernel to man-
agethe device,and also can launch programswhich have beenregisteredas handling a
certain classof device.

What is neededfor smart-cardsis a genericlibrary for accessingsmart-cards,which
will also perform the samejob as hotplug does for USB devices. More formally, it will
managethe permissionson smart-card readerdevicessuch that multiple applicationscan
securelyaccesstheir cards. Applications can also be set as handlers to be launched for
certain typesof cardsor can be run themselvesto listen for the next card inserted. This
is similar to the hotplug program for USB devices,however, there's is not an obvious
architecture in placefor classifyingcardsas with USB devices.

1Europay-Mastercard-Visa: http://www.emvco.com
2Chip/Smart-Card Interface Devices- speci¯cations on

http://www.usb.or g/developers/devclassdocs/ccid classspec 1 00a.pdf

2

Pro ject Aim

The aim of the project itself will be to producea driver, split into two sections,which can
be usedby applications wanting to accesssmart-cards. Sometrivial test programswill
be usedto demonstratethis. The two sectionsof the driver would be a daemonprocess,
similar to hotplug - and launched by hotplug when a smart-card readerwas connected.
The secondpart is a library which would be usedby application software to provide an
API for accessingthe smart-card, and for communicating with the daemon.

The daemonpart of the driver would be launchedby hotplug whena CCID-compliant
readeris connected.This would then wait for insertion of a card and dependingon various
settings it would hand over control of the card to someapplication. This could either be
a one o®application notifying the driver that it is waiting for the insertion of the card,
or pre-registeredas the application which handlesthat type of card.

The other section would be a library used to accessthe cards. This would be used
by any application wanting to use the driver, and would communicate with both the
daemonprocessand directly to the card when control washandedover. Sincethe CCID
speci¯cation speci¯esseveral levelsof accessto the card, the API provided by the library
functions would have to allow accessat any of these levels of abstraction. Obviously
an API speci¯cation for useby other programmers(in the form of Unix Manual pages)
should be provided.

There are several challengeshere. Firstly, at a basic level I need to work on by
programming in C, since I haven't done much of this. Moving from Pascal and Java
shouldn't be too much of a problem, however. Secondly, as I have said, USB provides a
niceinterfacefor classifyingdevices.The CCID specdoesn't provide anything equivalent.
There are several possiblestrategiesto look at, such as allowing applications to provide
scripts in somelanguagewhich would decide if a card was usableby that application.
There are obvious security issuesherewhich needto be thought through.

The applications that will be usedto demonstratethe library will mainly be trivial
test applications, however, I shall include a tool which is useful in itself, which is onefor
performing interactive sessionswith the card.

3

Assessment Criteria

A typical application usefor this would be somethinglike a Linux PluggableAuthentica-
tion Module for authentication, which would require a card inserted to log in. Successof
this project will be determinedwhen the test applications written using several di®erent
levels of the API can accesscards independently and reliably.

Timetable
Weeks Work

MichaelmasTerm
1-2 USB & CCID spec reading + C practice
3-4 Designof daemonAPI, library API, test speci¯cations
5-6 Implementation of daemon

Milestone: daemoncan report details of card on insertion
Christmas Holidays Implementation of library

Lent Term
Deliv erable: ProgressReport

7-8 Implementation of library
Milestone: Library functions which can communicate with the daemon

and the card
9-10 Testing & collecting scalability data

11-12 Writing Up
13-14 Writing Up

Easter Holidays (Revision)

Easter Term
15-16 Writing Up
17-18 Time usedfor ¯nishing dissertation if necessary
18-19 Time usedfor ¯nishing dissertation if necessary

Deliv erable: Final dissertation

4

Resources

I shall be doing most of the development on my personalmachines. Thesecompriseof
a Dell Intel-basedlaptop and a recent AMD PC both running Debian GNU/Lin ux, with
the ¯les stored on a Via Epia machine with redundant storage.

Backup Arrangemen ts

Backup arrangements will bemadeusinga selectionof machinesdistributed acrossseveral
collegesand departments, and the University Archive server. Code will be stored in CVS
on onemachine, with continuousmirroring on a separatemachine, with nightly backups
of the CVS repository taken to the other machinesdistributed acrossCambridge.

Special Resources

The Security Group areproviding several CCID Smart-Card readersand ISO-7816smart-
cards.

Supervisor

Steven Murdoch of the Security Group hasagreedto superviseme, at Dr Kuhn's sugges-
tion. Dr Kuhn will alsobe providing technical advice.

5

